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ABSTRACT

Motivation: Therapeutic enhancement of innate immune
response to microbial attack is addressed as the optimal
control of a dynamic system. Interactions between an
invading pathogen and the innate immune system are
characterized by four non-linear, ordinary differential equa-
tions that describe rates of change of pathogen, plasma
cell, and antibody concentrations, and of an indicator
of organic health. Without therapy, the dynamic model
evidences sub-clinical or clinical decay, chronic stabiliza-
tion, or unrestrained lethal growth of the pathogen; the
response pattern depends on the initial concentration of
pathogens in the simulated attack. In the model, immune
response can be augmented by therapeutic agents that
kill the pathogen directly, that stimulate the production of
plasma cells or antibodies, or that enhance organ health.
A previous paper demonstrated open-loop optimal control
solutions that defeat the pathogen and preserve organ
health, given initial conditions that otherwise would be
lethal (Stengel et al., 2002). Therapies based on separate
and combined application of the agents were derived by
minimizing a quadratic cost function that weighted both
system response and control usage, providing implicit
control over harmful side effects.

Results: We demonstrate the ability of neighboring—
optimal feedback control to account for a range of unknown
initial conditions and persistent input of pathogens by
adjusting the therapy to account for perturbations from the
nominal-optimal response history. We examine therapies
that combine open-loop control of one agent with closed-
loop control of another. We show that optimal control
theory points the way toward new protocols for treatment
and cure of human diseases.

Contact: stengel @ princeton.edu; rghiglia @ princeton.edu;
nkulkarn @ princeton.edu

INTRODUCTION

Infectious microbes trigger a dynamic response of the
immune system, in which potentially uncontrolled growth
of the invader (or pathogen) is countered by various

*To whom correspondence should be addressed.

protective mechanisms. The outer perimeter of defense
consists of the surface epithelial layers of the body, includ-
ing the epidermal cells of the skin and the mucosal cells
that line the respiratory, gastrointestinal, and genitourinary
tract (Lydyard et al., 2000; Janeway, 2001; Thain and
Hickman, 2000). The innate immune system provides a
tactical response, signaling the presence of ‘non-self’
organisms and activating B cells to produce antibod-
ies that bind to the intruders’ antigens. The antibodies
identify targets for scavenging cells (e.g. neutrophils and
macrophages) that engulf and consume the microbes,
reducing them to non-functioning units. They also stimu-
late the production of cytokines, complement, and acute-
phase proteins that either damage an intruder’s plasma
membrane directly or that trigger the second phase of
immune response. The innate immune system protects
against many extracellular bacteria or free viruses found
in blood plasma, lymph, tissue fluid, or interstitial space
between cells, but it cannot defeat microbes that burrow
into cells, such as viruses, intracellular bacteria, and
protozoa.

Strategic response to intracellular microbial assault is
provided by the adaptive immune system, which produces
protective cells that remember specific antigens, that pro-
duce antibodies to counter the antigens, and that seek out
epitopes (or defining regions) of antigens on the surfaces
of infected cells. Adaptive immune mechanisms depend
on the actions of B and T lymphocyte cells that become
dedicated to a single antibody type through clonal selec-
tion. Killer T cells (or cytotoxic T lymphocytes) bind to
infected cells and kill them by initiating programmed cell
death (apoptosis). Helper T cells assist naive B cells in
maturing into plasma cells that produce the needed an-
tibody type. Immune cells with narrowly focused mem-
ory are generated, ready to respond rapidly if invading
microbes with the same antigen epitopes are encountered
again. Elements of the innate and adaptive immune sys-
tems are shared, and response mechanisms are coupled,
even though separate modes of operation can be identified.

Here, we address post-exposure therapy for a clinically
diagnosed condition. The options available for clinical
treatment of infection once it has been recognized fo-
cus on Kkilling the invading microbes, neutralizing their
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deleterious effects, enhancing the efficacy of immune
response, and providing palliative or healing care to other
organs of the body. Few biological or chemical agents have
just a single effect; for example, an agent that kills a virus
also may damage healthy ‘self’ cells. A critical function
of drug discovery and development is to identify new
compounds that have maximum intended efficacy with
minimal side effects in the general population. Examples
include antibiotics as microbe killers; interferons as mi-
crobe neutralizers; interleukins, antigens from killed (i.e.
non-toxic) pathogens, and pre-formed and monoclonal
antibodies as immunity enhancers (each of very different
nature); and anti-inflammatory and anti-histamine com-
pounds as palliative drugs.

Many models of immune response to infection have
been postulated (Asachenkov et al., 1994; Rundell et
al., 1995; Perelson, 1997; Nowak and May, 2000), with
recent emphasis on the human-immunodeficiency virus
(HIV; Nowak et al., 1995; Perelson et al., 1996; Perelson
and Nelson, 1999; Wodarz et al., 2000a,b; Stafford et
al., 2000). Norbert Wiener (Wiener, 1948) and Richard
Bellman (Bellman, 1983) appreciated and anticipated the
application of mathematical analysis to treatment in a
broad sense, and Swan (1981) surveys early optimal
control applications to biomedical problems. Kirschner
et al. (1997) offers an optimal control approach to HIV
treatment, and intuitive control approaches are presented
in Bonhoeffer e al. (1997); Wein et al. (1998); Wodarz
and Nowak (1999) and Wodarz and Nowak (2000).
The dynamics of drug response (pharmacokinetics) are
modeled in van Rossum et al. (1986) and Robinson
(1986), and control theory is applied to drug delivery in
Bell and Katusiime (1980); Carson et al. (1985); Chizeck
and Katona (1985); Schumitsky (1986); Jelliffe (1986);
Polycarpou and Conway (1996); Kwong et al. (1996);
Gentilini et al. (2001) and Parker et al. (1996).

The present analysis examines regimens for applying
drugs in a manner that maximizes efficacy while minimiz-
ing side effects and cost. That means killing, neutralizing,
or limiting growth of the pathogen with small impact on
the patient’s health and pocketbook. By illustrating op-
timal enhancement of immune response, control theory
can help discriminate between options for attacking the
disease directly, stimulating the immune system, suppress-
ing or amplifying ancillary biological processes, prescrib-
ing drug dosage and timing, and specifying multiple-drug
therapies.

In the remainder, we present a simple model for the
response of the innate immune system to infection and
to therapy, review the prior method and results of opti-
mization (Stengel et al., 2002), and introduce a signifi-
cant extension to the optimal control method of enhanc-
ing immune response. The earlier results show not only
the progression from an initially life-threatening state to

a controlled or cured condition but the optimal history of
therapeutic agents that produces that condition. Here, the
therapeutic method is extended by adding linear—optimal
feedback control to the nominal optimal solution. Pertur-
bations from the expected history of immune state may
arise from uncertainty about the initial concentration of
pathogen or the continuing introduction of new pathogen.
Feedback allows the therapy to be adjusted, expanding the
range of infectious intensity that can be treated effectively
and efficiently.

A MODEL OF NATURAL AND ENHANCED
IMMUNE RESPONSE

A simple model of infectious disease is presented in
Asachenkov er al. (1994) for the principal purpose of
‘studying the general picture of the course of a disease
and clarifying some observational results.” There are four
components to the model’s dynamic state:

Xx;] = concentration of a pathogen that expresses a specific foreign

antigen;
Xy = concentration of plasma cells that are specific to the foreign
antigen;
x3 = Concentration of antibodies that bind to the foreign antigen;
x4 =  characteristic of a damaged organ [0 = healthy, 1 = dead].

In Asachenkov et al. (1994), the first element of the state
is loosely referred to as a concentration of ‘viruses’, by
which is meant a concentration of pathogenic antigens;
however, too many elements of the adaptive immune
system (most notably helper and killer T cells in various
states of activation or infection) are missing for the model
to represent response to a viral attack. Nevertheless, the
Asachenkov model does characterize qualitative behavior
of the innate immune system, and we view x; as a
concentration of extracellular bacteria that are ‘virulent.’

We add idealized therapeutic control agents, u;, as well
as an exogenous input, w, to the model of Asachenkov et
al. (1994), where:

uy = pathogen killer;

up = plasma cell enhancer;

u3 =  antibody enhancer;

ugy = organ healing factor (or health enhancer);
w = rate of continuing introduction of pathogen.

The structural relationship of system variables is illus-
trated by Figure 1. Introduction of the pathogen stimulates
the production of plasma cells and antibodies and degrades
organ health. Organ health mediates plasma cell produc-
tion, inferring a relationship between immune response
and fitness of the individual. Antibodies bind to the attack-
ing antigens, thereby killing pathogenic microbes directly,
activating complement proteins, or triggering an attack by
phagocytic cells, e.g. macrophages and neutrophils. Each
element of the state is subject to independent control, and
new microbes may continue to enter the system.
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Fig. 1. Innate and enhanced immune response to a pathogenic
attack.

As in Stengel et al. (2002), the four non-linear, ordinary
differential equations of the modified dynamic model are:

X1 = (a11 — apx3)xy +bju; +w
X2 = a1 (x4)anxixs
— a3 (x2 — x2%) + bour
X3 = az1x2 — (az2 + azzx1)x3 + bzus
X4 = a41X1 — asx4 + bauy

(1-4)

where the x; vary with time, except for the steady
equilibrium value of x;*, which is 2. Values of the

parameters used for this study are: a;; = ajp = a3 =
a1 = agp = by = b3 =1,by = by = —1, a2 = 3,
a3y = 1.5, and azz = a4 = 0.5. a21(X4) i a non-

linear function that describes the mediation of plasma cell
generation by the damaged organ:

cos(mxyg), 0=<x4< 1
a1 (xg) = 0 ) 1< 2 5
) z X X4

The parameters have been chosen to produce a system that
recovers or succumbs to the pathogen (without treatment)
as a function of initial conditions during a period of
ten time units. Both parameters and time units are
abstractions, as no specific disease is addressed. The state
and control are always positive because concentrations
cannot go below zero, and organ death is indicated when
x4 = 1.

Figure 2 (from Stengel et al., 2002) shows typical un-
controlled response to increasing levels of initial pathogen

Pathogens
(2
Flasma Cells

Time units

Time units

Fig. 2. Natural response to attack by a pathogen (from Stengel ez al.,
2002).

concentration. Conceptually, the sub-clinical response
would not require medical examination, while the clinical
case warrants medical consultation but is self-healing
without intervention. Pathogen concentration stabilizes at
non-zero value in the chronic case, which is characterized
by permanently degraded organ health, and it diverges in
the lethal case, killing the organ. The ‘lethal’ simulation of
Figure 2 is allowed to continue past the point at which x4
exceeds one for illustrative purposes only. The mathemat-
ical model is seen to have a stable equilibrium when x = 0
and a neutrally stable equilibrium in the neighborhood of
the chronic solution at the end of the period.

TREATMENT COST FUNCTION AND THE
NOMINAL-OPTIMAL CONTROL POLICY

The model of Equations (1-4) allows us to simulate innate
immune response to pathogenic attack and to therapy,
but it does not tell us what the therapeutic protocol
should be. The optimal therapeutic protocol is derived by
minimizing a treatment cost function, J, that penalizes
large values of pathogen concentration, poor organ health,
and excessive application of therapeutic agents over the
fixed time interval [fo, 7] and at the end of the treatment
interval:

1

2 2 L[ 2 2
J = \puxi, +puxy )+ = (qr1x7 + qaaxy
) f )72 ),

+r11u% + rnu% + r33u% + r44u£)dt (6)

The cost function variables are squared to amplify the ef-
fects of large variations and to de-emphasize contributions
of small variations. Each squared element is multiplied by
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a coefficient (pj;, gii, or r;;) that establishes the relative
importance of the factor in the treatment cost. These co-
efficients could reflect financial cost, or they could rep-
resent physiological ‘cost,” such as virulence, toxicity, or
discomfort. The weighting coefficients provide a mecha-
nism for trading one variation against the others in defin-
ing the treatment protocol, balancing speed and efficacy of
treatment against implicit side effects.

The disease dynamic model (Equations 1-4) can be
expressed in vector form,

X(1) = f[x(1), u(®), w(1)] )

where X is the state, u is the control, and w is an exogenous
disturbance. The scalar cost function (Equation 6) takes
the general form,

ry
L [x(1), u(¢)] dt

J=¢[x(ty)] +/

I

1 T
= 5 X (tf)PfX(tf)

Iy
+ / [xTa)Qx(r)+uT(z)Ru<z)]dt} @®)
fo

L[x(t),u(t), t] is called the Lagrangian, and the p;;, gii,
and r;; are diagonal elements of the matrices P, Q, and R.
Defining the Hamiltonian of the system,

H[x(r), u(r), w(t), A(1), 1]
= L[x(1), u(0), 1]+ A" OFx (1), u(0), w(n)]

= %(6111)612 + qaaxi + riud + ropud + V33u§ + raqu3)
+A1l(arr — apx3)xy + biuy + w]

+Az2laz (x4)axnx1x3 — axz(x2 — x2™) + bous]
+A3lazixz — (a3 + azzxi)x3 + bzusz]

+Aglagix) — agpxq + bauyl 9

the necessary conditions for optimizing the cost function
with respect to control are expressed by the three Euler—
Lagrange equations (Stengel, 1994):

i) = — {aH[X(”v “(f;’XW@), A1), 1] }T
T
Mip) = {W} (10a-12a)
o AHIX®. u@®), w(n), A1), 1]

ou

In scalar form, the equations are

A o= —lgux1 + A(ar — anx3)
+ A2azi(x4)aznxs — Azazzxs + Aqaqn]

A = haaxs — A3as (10b)
A3 = Mainxi — Aaz) (xa)anxi + A3azxi
: day)
A = —[qaax4 + Ap———axx1x3 — Aqa42]
0x4
M(ty) = prxi(ty)
A(tr) =0 (11b)
A3(tp) =0
A (tf) = paaxa(ty)
riul +iby =0
rnuy + A2by =0 (12b)

r33u3 + A3bz =0
raaug + Agby = 0.

The Euler-Lagrange equations include a linear, ordinary-
differential equation whose integral is the adjoint vector,
A(t) (Equation 10), a terminal boundary condition that
specifies A(77) at the end of the interval (Equation 11),
and a stationarity condition on the control throughout
the interval (Equation 12). Here, the disturbance, w(¢),
is treated as a known parameter. Equations (7) and (10—
12) must be satisfied concurrently, specifying a two-point
boundary-value problem that is solved numerically. The
solution is necessarily iterative because the system model
is non-linear, initial conditions are given for x, and termi-
nal conditions are given for A. The solution is initiated
by solving Equation (7) with a starting guess for the
control history, u,(¢) in [fo, #r]. Equation (10) is solved,
integrating back from the end conditions specified by
Equation (11). In general, the remaining necessary con-
dition for optimality, Equation (12), is not satisfied, so
a steepest-descent method is used to generate successive
approximations of the optimal control history u*(z) from

OH(x,u,w,A, 1)
w (1) = w1 (1) — ¢ 5 (13)
u

where ¢ is a small positive constant and k is the iteration
index (Stengel et al., 2002). For k sufficiently large,
dH /du tends to zero, and u(¢) converges to the optimal
control history that is applied in Equations (1-4) or (7).
Nominal-optimal solutions computed for otherwise-
lethal initial conditions and unit cost function weights are
presented in Figure 3 (from Stengel et al., 2002). Finding
the control history that minimizes the cost function
typically requires 10-20 steepest-descent iterations. The
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Fig. 3. Optimal therapies with unit cost-function weights and scalar
controls (from Stengel ef al., 2002).

example shows that each of the therapeutic agents used
separately can defeat the pathogen and maintain organ
health with varying (but important) participation of the
innate immune system. All of the therapeutic protocols
specify an initially strong dose of the agent followed by
exponential decay. These results infer that combination
therapies can be even more effective in defeating the
pathogen and maintaining organ health than treatment
by a single agent, and the present neighboring-optimal
approach confirms the inference.

While the drug concentration decays over time in
Figure 3, this is not a pharmacokinetic effect, as the
model contains no dynamics of drug uptake. The reduction
in therapeutic level is prescribed by the optimization
procedure alone. If the drug is consumed or eliminated at
a rate greater than that shown in the figure, then additional
dosage is required to maintain the level prescribed by the
optimization.

If the initial concentration of pathogen is changed from
its nominal value, the nominal-optimal therapy is no
longer optimal, and a new regimen must be defined to
retain optimality. For small increase in initial pathogen
concentration, the combination of the innate immune
system and the nominal-optimal control policy prevails,
and the pathogen is defeated, though the response history
is no longer optimal. For a strong enough assault, the
combination of immune response and therapy is insuf-
ficient, and the pathogen grows without bound, killing
the organ. The therapeutic protocol must be adjusted to
accommodate the change, either through continued re-
evaluation of the nominal-optimal policy or through a

simpler mechanism for modifying the policy in proportion
to deviations from the expected response history. In the
remainder of the paper, we show that linear—optimal feed-
back control provides a good mechanism for adjusting the
therapy, and it provides a simple means for introducing
additional therapeutic agents that are not included in the
nominal-optimal protocol.

NEIGHBORING-OPTIMAL CONTROL POLICY

Enhancement of the optimal therapy can be based on
the solution of a neighboring—optimal control problem, as
presented in Stengel (1994) and elsewhere. Actual state
and control histories can always be represented as sums of
the optimal histories derived from the iterative procedure,
x*(t) and u*(¢), and deviations from those histories, Ax(7)
and Au(z),

X(1) = x*(t) + Ax(1) (14)
u(t) =u*(1) + Au(r) (15)

Neglecting the disturbance effect, Equation (7) can be
expanded as,

X(1) =X*(t) + AX(1)
=f([x*(1) + Ax(1)], [u* (1) + Au(n)])

of of

=fx*(@), u* ()] + —Ax(®) + —Au(t) + - --
ox oJu

~ f[x* (1), u* ()] + F(t) Ax(t) + G(t) Au(r) (16)

where F(¢) and G(¢) are the time-varying Jacobian matri-
ces evaluated along the nominal-optimal history. Because
the nominal-optimal solution satisfies Equation (7), the
dynamics of the perturbed state are closely approximated
by the linear, time-varying equation

Ax(t) = F(t) Ax(t) + G(r) Au(r) (17a)
when perturbations are small deviations from the nominal
solution. This equation can be written explicitly as

AX|
AXp
AX3
AXy
(a11 —appx3z) O
ar1(x4)axnx3 —ax3y a(xs)anxi %“—f:azlem

—ax] 0

—a33x3 az1 —(azp +assxy) 0
as 0 0 —a42
AXq by 0 0 O Auq
Axy 0O bpb 0 O Auy
1 axs [T 0 0 5 0 Auy | (70
Axy 0O 0 O by Aug
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Optimal histories for this model of perturbed response
are derived from the same conditions as before (Equa-
tions 10-12), but we redefine the cost function and Hamil-
tonian as functions of the perturbation variables. The new
cost function is the second variation of the original cost
function,

t
A%J = g[AX(t7)] + f ' LIAX(1), Au(z)]dt

fo

1 T 2 T
— 5{Ax (tr)PrAX(tf) + / [Ax!(1)QAX(r)
0]

—i—AuT(t)RAu(t)]dt} (18a)

or
2 1 2 2 L[ 2
A°J = = (pr1Axy, + paaAxy ) + = (g1 Ax;
) f 72 )

+q44Axf + r“Au% + rngu% + r33Au§

+}’44Au‘2l)dl‘ (18b)

and the Hamiltonian is expressed as,

H[AX(1), Au(t), AL(1)] = L[AX(1), Au(r)]
+AMTOFO)AX(@) + G Au@®]  (19)
where AA(?) is the adjoint vector for the linearized
system. The Euler-Lagrange equations (Equations 10—
12) can be applied to the variational system described

by Equations (17-19). From Equation (12), the control
perturbation can be expressed as

Au*(t) = —R7'GT (1) AL (). (20)

Furthermore, the terminal condition for the adjoint vector
(Equation 11) is of the form,

AX(t7) = P(tf) AX(1y) 1)

and as AX and Ax are adjoint, eq. 21 applies over the
entire interval.

Because Equations (10) and (17) are linear, ordinary
differential equations, the neighboring optimization is
subject to a linear dynamic constraint (Equation 17), and
the optimal control policy is a linear feedback control law
(Stengel, 1994):

Au*(t) = —C(t) Ax(?) (22)
C(?) is the time-varying optimal gain matrix given by,
C(H) =R'GT(1)P() (23)

and P(¢) is the solution to a matrix Riccati equation
(Stengel, 1994):

P(t) = -F ' ()P@1) — P()F(t) + P()G(H)R™!
xGT()P(t) —Q, P(ty) =Py (24)

The dimensions of all matrices follow from the original
problem specification. Thus, the feedback gain matrix,
C(z), is calculated just once for the nominal-optimal
therapeutic history. From Equations (14) and (15), the
optimal control policy accounts for previously unknown
initial condition perturbations in the form

u(t) =u*(t) — C(t)Ax(t) = u*(¢)

—C()[x(r) — x*(1)] (25a)
or
uy(t) u*(t)
ur(t) | | u2*(®)
us(t) || uz*(®)
u4(t) ug*(1)
[ c11(t) cia(®) c13(t) c1a(®)
| oea@) en(t) c3(t)  calt)
c31(t) () c33(t) c34(1)
ca1(t) can(t) ca3(t)  caa(t)
[ xi(t) x1*(t)
x2(1) x2*(t)
o T T Bl (25b)
LL x4(2) x4*(t)

where x(¢) is the state measured at the time therapy is
applied, x*(¢) is its nominal-optimal value, and u(z) is
the total therapy applied at time ¢. The optimal treatment
protocol is prescribed by the nominal-optimal control
history, the time-dependent gain matrix, and the difference
between the observed response and the nominal—-optimal
response.

APPLICATION TO ENHANCED IMMUNE
RESPONSE

To illustrate the effect of nominal—plus neighboring—optimal
therapy, we first compute nominal-optimal treatment for
a given initial concentration of pathogen, then increase
the infectious load to a point where the no-longer-optimal
therapy fails. The effects of neighboring—optimal control
are then shown. Holding the initial pathogen concentration
at its original value, we also consider a case with a contin-
uing influx of the infectious agent. The effects of single-
and multi-agent feedback therapies are demonstrated for
the more stressing cases.

Single-agent therapies

Our previous study (Stengel et al., 2002) revealed that the
pathogen killer, u1, and antibody enhancer, u3, were the
most effective individual controls, so we focus on those
two here. The cost—function weighting matrices, Q and
R, are the same for both the nominal and neighboring
optimizations. Except as noted, Q is an identity matrix,
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Fig. 4. Comparision of control responses with nominal and
increased initial concentrations of pathogen. Nominal initial
pathogen with nominal-optimal control (dash), increased initial
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initial pathogen with nominal-optimal plus neighbouring—optimal
control (solid) of pathogen killer (u1).

the diagonal term of R corresponding to the single control
is one, and all other elements of R are zero.

The effects of treatment with the pathogen killer alone
are shown in Figure 4. The nominal therapy, ui*(z),
controls the pathogen and preserves organ health with
the assumed initial pathogen concentration but not with
the increased microbial assault. The principal reasons for
failure are that the therapy decays exponentially with
time and the damage to the organ allows the antibody
concentration to drop off as well. Adding the neighboring—
optimal control

Au(t) = —c11()Ax1(t) — c12(t) Axo (1)
—c13(1) Ax3(t) — c14(t) Axq(t)  (26)

to the nominal-optimal control, u{*(#), produces a re-
sponse that parallels the original one. The additional infu-
sion of 1| provides a stronger response to the pathogen and
preserves antibody concentration. Maximum degradation
of organ health is larger, but health eventually is restored.
The feedback gains that provide this beneficial effect are
also shown in the figure. The predominant (and lasting)
effect is possible feedback of pathogen concentration to
pathogen killer through ¢y, though there is also a small
continuing feedback of organ health through c14. All of the
gains possess a two-time-unit transient near the beginning
of the history.

Basing the therapy on antibody enhancer alone, u3*(¢),
produces similar nominal and off-nominal results

(Figure 5; see Internet supplement). The response with
neighboring—optimal control, given by u3(t) = usz*(¢) +
Ausz(t), where

Ausz(t) = —c31(t) Ax1(t) — c32(t) Axa (1)
—c33(1) Ax3(t) — c34(H)Axg(t)  (27)

is successful in defeating the pathogen, but only if we
ignore the fact that the organ health indicator briefly
reaches one, signifying organ death. Had the initial
condition been slightly smaller or the cost-function weight
on organ health been higher, the treatment would have
succeeded. The response is generally slower than that
of the previous case, and build-up of both plasma cells
and antibodies is greater than before. Plasma cell and
antibody concentrations evidence a secondary response
that begins after five time units. The intensity of feedback
effect can be increased by decreasing the cost function
weight on control, r33, which increases control gains,
quickening the response and preserving long-term organ
health (not shown). Nevertheless, the feedback gains all
approach zero over time, precluding lasting protection
without redefining the control solution.

Combined therapies

It is straightforward to compute the nominal-optimal
history using one control variable and the neighboring—
optimal control law using another. In such a case, the
cost function control weighting matrices, R, for the two
solutions are not the same. We examine some combined
therapies based upon the pathogen killer, antibody en-
hancer, and organ health enhancer.

The response and control gains are like those of the
previous case when nominal-optimal pathogen killer is
combined with neighboring—optimal antibody enhancer or
when the nominal control is antibody enhancer, and the
feedback control is pathogen killer (Figure 6 and 7; see
Internet supplement). The net responses of these two cases
are quite similar, though the control profiles and gains
differ. While the organ is not killed in either case, the cost
function weight on organ health (g44) could be increased
to widen the margin between ill health and organ death.

Feedback enhancement of organ health is unsuccess-
fully combined with nominal-optimal enhancement of
antibodies (Figure 8; see Internet supplement). The effect
of u4 on the pathogen is indirect, stimulating organ health,
which enhances plasma cell production, which enhances
antibody production, which kills the pathogen. Antibody
concentration does not increase enough to prevent run-
away of the infection, and the organ is quickly killed.
Examining the feedback gains, we see that the control is
insensitive to the pathogen perturbation (via c41) until it is
too late to make a difference.

A much better result is obtained when the penalty on
organ health enhancer use is reduced (r44 = 0.1) and
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that feedback control is combined with nominal—optimal
pathogen killer (Figure 9; see Internet supplement). The
feedback gains now recognize the importance of the
pathogen petrubation and mount an early defense. Al-
though plasma cell and antibody petrubations have a
negligible effect on the feedback control, both of their
concentrations remain strong throughout the episode. Fur-
thermore, the direct effect of u4 on the rate of change of
X4 prevents its excursion from being much worse than in
the nominal—optimal case.

Response to continuing infection

We may anticipate circumstances in which infection is
characterized not only by a large initial concentration at
the beginning of a treatment period but by the continu-
ing re-infection of microbes sequestered in regions not
directly modeled by Equations (1-4). As a preliminary
look at this problem, we add a constant disturbance of
w = 0.5 to the simulation and return to single-agent
control with the pathogen killer. The nominal-optimal
control is computed for w = 0, but the feedback gains
are computed for a second optimal history that assumes
w = 0.5. Thus, the gains are not the same as those shown
in Figure 4. Applying the nominal-optimal control to the
disturbed system results in divergence, even though the
initial infection is unchanged (Figure 10; see Internet sup-
plement). The characteristic loss of antibodies and organ
degradation are apparent. Neighboring—optimal control
prevents the divergence, and system response is nearly
nominal. The feedback control senses the continuing in-
trusion and injects a bias control that effectively cancels
it. As a consequence, both plasma cells and antibodies are
kept at higher levels, adding to the defense.

CONCLUSION

There are compelling reasons to apply control theory to
the treatment of disease, as mathematical models of the
disease processes alone do not reveal possibly counter-
intuitive approaches to therapy. Optimal control methods
are particularly well suited to the problem because they
show the best that can be done within assumptions and
provide a framework within which alternatives can be
evaluated. The critical challenge is not to develop new
theory but to apply what we know in a reasoned manner.
Choosing elements of cost functions, specifying available
control variables, and most importantly, using credible,
reliable models of pathogenic attack, direct effects of
therapy, and immune system response must be the focus.
Here, we demonstrate how numerical optimization of non-
linear models can be combined with neighboring—optimal
feedback control of linear models to suggest single- and
multi-agent therapies that enhance the natural response
of the innate immune system. We also show that theory
cannot be applied uncritically, that numbers and values

make important differences. Ultimately, a combination of
mathematics and empiricism can solve real problems and
improve the quality of life.
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