Gliding, Climbing, and Turning Flight Performance
Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Learning Objectives

• Conditions for gliding flight
• Parameters for maximizing climb angle and rate
• Review the V-n diagram
• Energy height and specific excess power
• Alternative expressions for steady turning flight
• The Herbst maneuver

Reading:
Flight Dynamics
Aerodynamic Coefficients, 130-141

Review Questions

• How does air density decrease with altitude?
• What are the different definitions of airspeed?
• What is a “lift-drag polar”?
• Power and thrust: How do they vary with altitude?
• What factors define the “flight envelope”?
• What were some features of the first commercial transport aircraft?
• What are the important parameters of the “Breguet Range Equation”?
• What is a “step climb”, and why is it important?
Gliding Flight

Equilibrium Gliding Flight

\[C_D \frac{1}{2} \rho V^2 S = -W \sin \gamma \]
\[C_L \frac{1}{2} \rho V^2 S = W \cos \gamma \]
\[\dot{h} = V \sin \gamma \]
\[\dot{r} = V \cos \gamma \]
Gliding Flight

- Thrust = 0
- Flight path angle < 0 in gliding flight
- Altitude is decreasing
- Airspeed ~ constant
- Air density ~ constant

Gliding flight path angle

\[
\tan \gamma = -\frac{D}{L} = -\frac{C_D}{C_L} = \frac{\dot{h}}{\dot{r}} = \frac{dh}{dr}; \quad \gamma = -\tan^{-1} \left(\frac{D}{L} \right) = -\cot^{-1} \left(\frac{L}{D} \right)
\]

Corresponding airspeed

\[
V_{glide} = \sqrt{\frac{2W}{\rho S \sqrt{C_D^2 + C_L^2}}}
\]

Maximum Steady Gliding Range

- Glide range is maximum when \(\gamma \) is least negative, i.e., most positive
- This occurs at \((L/D)_{max} \)
Maximum Steady Gliding Range

- Glide range is maximum when γ is least negative, i.e., most positive
- This occurs at $(L/D)_{\text{max}}$

$$\gamma_{\text{max}} = -\tan^{-1}\left(\frac{D}{L}\right)_{\text{min}} = -\cot^{-1}\left(\frac{L}{D}\right)_{\text{max}}$$

$$\tan \gamma = \frac{\dot{h}}{\dot{r}} = \text{negative constant} = \frac{(h - h_o)}{(r - r_o)}$$

$$\Delta r = \frac{\Delta h}{\tan \gamma} = -\Delta h = \text{maximum when } \frac{L}{D} = \text{maximum}$$

Sink Rate, m/s

Lift and drag define γ and V in gliding equilibrium

$$D = C_D \frac{1}{2} \rho V^2 S = -W \sin \gamma$$

$$\sin \gamma = -\frac{D}{W}$$

$$L = C_L \frac{1}{2} \rho V^2 S = W \cos \gamma$$

$$V = \sqrt{\frac{2W \cos \gamma}{C_L \rho S}}$$

Sink rate = altitude rate, $\frac{dh}{dt}$ (negative)

$$\dot{h} = V \sin \gamma$$

$$= -\sqrt{\frac{2W \cos \gamma}{C_L \rho S}} \left(\frac{D}{W}\right) = -\sqrt{\frac{2W \cos \gamma}{C_L \rho S}} \left(\frac{L}{W}\right) \left(\frac{D}{L}\right)$$

$$= -\sqrt{\frac{2W \cos \gamma}{C_L \rho S}} \cos \gamma \left(\frac{1}{L/D}\right)$$
Conditions for Minimum Steady Sink Rate

- Minimum sink rate provides maximum endurance
- Minimize sink rate by setting \(\partial(h/dt)/\partial C_L = 0 \) (\(\cos \gamma \sim 1 \))

\[
\dot{h} = -\sqrt{\frac{2W \cos \gamma}{C_L \rho S} \cos \gamma \left(\frac{C_D}{C_L} \right)}
\]

\[
\approx -\sqrt{\frac{2W \cos^3 \gamma}{\rho S} \left(\frac{C_D}{C_L^{3/2}} \right)} \approx -\sqrt{\frac{2W}{S} \left(\frac{C_D}{C_L^{3/2}} \right)}
\]

\[
C_{L_{ME}} = \sqrt{\frac{3C_D}{\epsilon}} \quad \text{and} \quad C_{D_{ME}} = 4C_D
\]

\[L/D\] and \(V_{ME} \) for Minimum Sink Rate

\[
(L/D)_{ME} = \frac{1}{4} \sqrt{\frac{3}{\epsilon C_D}} = \frac{\sqrt{3}}{2} (L/D)_{max} \approx 0.86 (L/D)_{max}
\]

\[
V_{ME} = \sqrt{\frac{2W}{\rho S \sqrt{C_{D_{ME}}^2 + C_{L_{ME}}^2}}} \approx \sqrt{\frac{2(W/S)}{\rho} \sqrt{\frac{\epsilon}{3C_D}}} \approx 0.76 V_{L/D_{max}}
\]
L/D for Minimum Sink Rate

• For $L/D < L/D_{\text{max}}$, there are two solutions
• Which one produces smaller sink rate?

\[
\frac{L/D}{ME} \approx 0.86 \left(\frac{L/D}{max}\right)
\]

\[
V_{ME} \approx 0.76 V_{L/D_{\text{max}}}
\]

Historical Factoids
Lifting-Body Reentry Vehicles

M2-F1
M2-F2
M2-F3
HL-10
X-24A
X-24B
M2-F2

Milestones in Flight History
Dryden Flight Research Center
NASA

Experience Lateral Oscillations in Flight
Circa 1967
Climbing Flight

- Flight path angle
 \[V = 0 = \frac{(T - D - W \sin \gamma)}{m} \]
 \[\sin \gamma = \frac{(T - D)}{W} ; \quad \gamma = \sin^{-1} \left(\frac{T - D}{W} \right) \]

- Required lift
 \[\dot{V} = 0 = \frac{(L - W \cos \gamma)}{mV} \]
 \[L = W \cos \gamma \]

Rate of climb, \(dh/dt \) = Specific Excess Power

\[\dot{h} = V \sin \gamma = V \frac{(T - D)}{W} = \left(\frac{P_{\text{thrust}} - P_{\text{drag}}}{W} \right) \]

Specific Excess Power (SEP) = \(\frac{\text{Excess Power}}{\text{Unit Weight}} = \frac{P_{\text{thrust}} - P_{\text{drag}}}{W} \)
Steady Rate of Climb

Climb rate

\[\dot{h} = V \sin \gamma = V \left[\left(\frac{T}{W} \right) - \left(\frac{C_D + \varepsilon C_L^2}{(W/S)} \right) \right] \]

Note significance of thrust-to-weight ratio and wing loading

\[\dot{h} = V \left[\left(\frac{T}{W} \right) - \frac{C_D}{(W/S)} - \frac{\varepsilon(W/S)\cos^2 \gamma}{\bar{q}} \right] \]

\[= V \left(\frac{T(h)}{W} \right) - \frac{C_D \rho(h)V^3}{2(W/S)} - \frac{2\varepsilon(W/S)\cos^2 \gamma}{\rho(h)V} \]

Condition for Maximum Steady Rate of Climb

Necessary condition for a maximum with respect to airspeed

\[\frac{\partial \dot{h}}{\partial V} = 0 = \left[\left(\frac{T}{W} \right) + V \left(\frac{\partial T / \partial V}{W} \right) \right] - \frac{3C_D \rho V^2}{2(W/S)} + \frac{2\varepsilon(W/S)\cos^2 \gamma}{\rho V^2} \]
Maximum Steady Rate of Climb: Propeller-Driven Aircraft

True Airspeed

- At constant power
 \[\frac{\partial P_{\text{thrust}}}{\partial V} = 0 = \left[\frac{T}{W} + V \left(\frac{\partial T}{\partial V} / W \right) \right] \]

- With \(\cos^2 \gamma \sim 1 \), optimality condition reduces to
 \[\frac{\partial h}{\partial V} = 0 = -\frac{3C_D \rho V^2}{2(W/S)} + \frac{2 \varepsilon (W/S)}{\rho V^2} \]

- Airspeed for maximum rate of climb at maximum power, \(P_{\text{max}} \)
 \[V^4 = \left(\frac{4}{3} \right) \varepsilon \left(\frac{W}{S} \right)^2 + \frac{2 \varepsilon (W/S)}{\rho} \sqrt{\frac{\varepsilon}{3C_D}} = V_{ME} \]

Maximum Steady Rate of Climb: Jet-Driven Aircraft

True Airspeed

Condition for a maximum at constant thrust and \(\cos^2 \gamma \sim 1 \)

\[\frac{\partial h}{\partial V} = 0 \]

\[-\frac{3C_D \rho}{2(W/S)} V^4 + \left(\frac{T}{W} \right) V^2 + \frac{2 \varepsilon (W/S)}{\rho} = 0 \]

\[-\frac{3C_D \rho}{2(W/S)} (V^2)^2 + \left(\frac{T}{W} \right) (V^2) + \frac{2 \varepsilon (W/S)}{\rho} = 0 \]

Quadratic in \(V^2 \)

Airspeed for maximum rate of climb at maximum thrust, \(T_{\text{max}} \)

\[0 = ax^2 + bx + c \quad \text{and} \quad V = +\sqrt{x} \]
Optimal Climbing Flight

What is the Fastest Way to Climb from One Flight Condition to Another?
Energy Height

- Specific Energy
 - = (Potential + Kinetic Energy) per Unit Weight
 - = Energy Height

$\text{Specific Energy} \equiv \frac{\text{Total Energy}}{\text{Unit Weight}}$

$= \frac{mgh + \frac{mV^2}{2}}{mg} = h + \frac{V^2}{2g}$

$\equiv \text{Energy Height, } E_h, \text{ft or m}$

Can trade altitude for airspeed with no change in energy height if thrust and drag are zero

Specific Excess Power

Rate of change of Specific Energy

$\frac{dE_h}{dt} = \frac{d}{dt} \left(h + \frac{V^2}{2g} \right) = \frac{dh}{dt} + \left(\frac{V}{g} \right) \frac{dV}{dt}$

$= V \sin \gamma + \left(\frac{V}{g} \right) \left(\frac{T - D - mg \sin \gamma}{m} \right) = V \frac{(T - D)}{W}$

$= \text{Specific Excess Power (SEP)}$

$\text{Excess Power} \equiv \frac{P_{\text{thrust}} - P_{\text{drag}}}{\text{Unit Weight}} = \frac{(C_T - C_D) \frac{1}{2} \rho(h)V^2S}{W}$
Contours of Constant Specific Excess Power

- Specific Excess Power is a function of altitude and airspeed
- SEP is maximized at each altitude, h, when

$$\max_{h \in V} SEP(h) \quad \frac{d}{dV} SEP(h) = 0$$

Subsonic Minimum-Time Energy Climb

Objective: Minimize time to climb to desired altitude and airspeed

Minimum-Time Strategy:
- Zoom climb/diving to intercept $SEP_{\text{max}}(h)$ contour
- Climb at $SEP_{\text{max}}(h)$
- Zoom climb/diving to intercept target $SEP_{\text{max}}(h)$ contour

Bryson, Desai, Hoffman, 1969
Subsonic Minimum-Fuel Energy Climb

Objective: Minimize fuel to climb to desired altitude and airspeed

- **Minimum-Fuel Strategy:**
 - Zoom climb/dive to intercept \([SEP(h)/(dm/dt)]_{\text{max}}\) contour
 - Climb at \([SEP(h)/(dm/dt)]_{\text{max}}\)
 - Zoom climb/dive to intercept target \([SEP(h)/(dm/dt)]_{\text{max}}\) contour

Bryson, Desai, Hoffman, 1969

Supersonic Minimum-Time Energy Climb

Objective: Minimize time to climb to desired altitude and airspeed

- **Minimum-Time Strategy:**
 - Intercept subsonic \(SEP_{\text{max}}(h)\) contour
 - Climb at \(SEP_{\text{max}}(h)\) to intercept matching zoom climb/dive contour
 - Zoom climb/dive to intercept supersonic \(SEP_{\text{max}}(h)\) contour
 - Climb at \(SEP_{\text{max}}(h)\) to intercept target \(SEP_{\text{max}}(h)\) contour
 - Zoom climb/dive to intercept target \(SEP_{\text{max}}(h)\) contour

Bryson, Desai, Hoffman, 1969
Checklist

- Energy height?
- Contours?
- Subsonic minimum-time climb?
- Supersonic minimum-time climb?
- Minimum-fuel climb?

\[
\frac{dE_h}{dm_{fuel}} = \frac{dE_h}{dt} \frac{dt}{dm_{fuel}} = \frac{1}{m_{fuel}} \left[\frac{dh}{dt} + \left(\frac{V}{g} \right) \frac{dV}{dt} \right]
\]
SpaceShipOne Altitude vs. Range
MAE 331 Assignment #4, 2010

SpaceShipOne State Histories
SpaceShipOne Dynamic Pressure and Mach Number Histories

The Maneuvering Envelope
Maneuvering Envelope:

- **Maneuvering envelope**: limits on normal load factor and allowable equivalent airspeed
 - Structural factors
 - Maximum and minimum achievable lift coefficients
 - Maximum and minimum airspeeds
 - Protection against over stressing due to gusts
 - Corner Velocity: Intersection of maximum lift coefficient and maximum load factor

- **Typical positive load factor limits**
 - Transport: > 2.5
 - Utility: > 4.4
 - Aerobatic: > 6.3
 - Fighter: > 9

- **Typical negative load factor limits**
 - Transport: < -1
 - Others: < -1 to -3

Maneuvering Envelopes (*V-n Diagrams*)
for Three Fighters of the Korean War Era

- Republic F-84
- North American F-86
- Lockheed F-94
Turning Flight

- Level flight = constant altitude
- Sideslip angle = 0
- Vertical force equilibrium

\[L \cos \mu = W \]

- Load factor

\[n = \frac{L}{W} = \frac{L}{mg} = \sec \mu, \text{"} g \text{"} \]

- Thrust required to maintain level flight

\[T_{req} = (C_{D_0} + \varepsilon C_L^2) \frac{1}{2} \rho V^2 S = D_0 + \frac{2\varepsilon}{\rho V^2 S} \left(\frac{W}{\cos \mu} \right)^2 \]

\[= D_0 + \frac{2\varepsilon}{\rho V^2 S} (nW)^2 \]
Maximum Bank Angle in Steady Level Flight

Bank angle

\[
\cos \mu = \frac{W}{C_L q S}
\]
\[
= \frac{1}{n}
\]
\[
= W \left(\frac{2\epsilon}{T_{req} - D_v} \rho V^2 S \right)
\]

Bank angle is limited by

\[
C_{I_{max}} \text{ or } T_{max} \text{ or } n_{max}
\]

Turning Rate and Radius in Level Flight

Turning rate

\[
\hat{\xi} = \frac{C_L q S \sin \mu}{mV}
\]
\[
= \frac{W \tan \mu}{mV}
\]
\[
= \frac{g \tan \mu}{V}
\]
\[
= \frac{\sqrt{L^2 - W^2}}{mV}
\]
\[
= \frac{W \sqrt{n^2 - 1}}{mV}
\]
\[
= \sqrt{\frac{T_{req} - D_v}{\rho V^2 S/2\epsilon - W^2}}
\]

Turning rate is limited by

\[
C_{I_{max}} \text{ or } T_{max} \text{ or } n_{max}
\]

Turning radius

\[
R_{turn} = \frac{V}{\hat{\xi}} = \frac{V^2}{g \sqrt{n^2 - 1}}
\]
Maximum Turn Rates

- Corner velocity
- Normal acceleration limit
- Maximum sustainable turn rate
- “Wind-up turns”
- Lift coefficient limit
- Thrust limit

Corner Velocity Turn

- Corner velocity
 \[V_{\text{corner}} = \frac{2n_{\text{max}}W}{\sqrt{C_{\text{L}_{\text{max}}} \rho S}} \]
- For steady climbing or diving flight
 \[\sin \gamma = \frac{T_{\text{max}} - D}{W} \]
- Turning radius
 \[R_{\text{turn}} = \frac{V^2 \cos^2 \gamma}{g \sqrt{n_{\text{max}}^2 \cos^2 \gamma}} \]
Corner Velocity Turn

- **Turning rate**

\[\dot{\gamma} = \sqrt{\frac{g \left(n_{\text{max}}^2 - \cos^2 \gamma\right)}{V \cos \gamma}} \]

- **Time to complete a full circle**

\[t_{2\pi} = \frac{V \cos \gamma}{g \sqrt{n_{\text{max}}^2 - \cos^2 \gamma}} \]

- **Altitude gain/loss**

\[\Delta h_{2\pi} = t_{2\pi} V \sin \gamma \]

Checklist

- V-n diagram?
- Maneuvering envelope?
- Level turning flight?
- Limiting factors?
- Wind-up turn?
- Corner velocity?
Herbst Maneuver

- Minimum-time reversal of direction
- Kinetic-/potential-energy exchange
- Yaw maneuver at low airspeed
- X-31 performing the maneuver

Next Time:

Aircraft Equations of Motion

Reading:

Flight Dynamics,

Section 3.1, 3.2, pp. 155-161

Learning Objectives

What use are the equations of motion?
How is the angular orientation of the airplane described?
What is a cross-product-equivalent matrix?
What is angular momentum?
How are the inertial properties of the airplane described?
How is the rate of change of angular momentum calculated?
Supplemental Material

Gliding Flight of the P-51 Mustang

Maximum Range Glide

- Loaded Weight = 9,200 lb (3,465 kg)
- \((L/D)_{\text{max}} = \frac{1}{2.8C_{D_0}} = 16.31\)
- \(\gamma_{\text{max}} = -\cot^{-1}\left(\frac{L}{D}\right)_{\text{max}} = -\cot^{-1}(16.3) = -3.5^\circ\)
- \((C_D)_{\text{L,max}} = 2C_{D_0} = 0.0326\)
- \((C_L)_{\text{L,max}} = \sqrt{\frac{C_{D_0}}{\epsilon}} = 0.531\)
- \(V_{L,max} = 76.49 \text{ m/s}\)
- \(h_{L,max} = V \sin \gamma = 4.68 \text{ m/s}\)
- \(R_{\text{L,glide}} = (16.31)(10) = 163.1 \text{ km}\)

Maximum Endurance Glide

- Loaded Weight = 9,200 lb (3,465 kg)
- \(S = 21.83 \text{ m}^2\)
- \(C_{D_{\text{max}}} = 4C_{D_0} = 4(0.0163) = 0.0652\)
- \(C_{L_{\text{max}}} = \sqrt{\frac{3C_{D_{\text{max}}}}{\epsilon}} = \sqrt{\frac{3(0.0163)}{0.0576}} = 0.921\)
- \((L/D)_{\text{end}} = 14.13\)
- \(h_{\text{end}} = -\frac{2W}{\rho \sqrt{S}} \left(\frac{C_{D_{\text{max}}}}{C_{L_{\text{max}}}}\right) = -\frac{4.11}{\sqrt{\rho}} \text{ m/s}\)
- \(\gamma_{\text{end}} = -4.05^\circ\)
- \(V_{\text{end}} = \frac{58.12}{\sqrt{\rho}} \text{ m/s}\)