Telemetry, Command, Data Processing & Handling

Space System Design, MAE 342, Princeton University
Robert Stengel

- System definition
- Computer architecture
- Components
- Data coding
- Fault tolerance and reliability
- Hardware and software testing

A Typical Space/Ground Information System

Wertz and Larson
Defining the System

- Identify the spacecraft bus and payload operational modes
- Allocate top-level requirements for the computer system
- Define sub-system interfaces
- Specify baseline computer system
 - Define computer system’s operational modes and states
 - Functionally partition and allocate computational requirements to
 - spacecraft sub-systems, hardware, or software
 - ground station
 - Analyze data flow
 - Evaluate candidate architectures
 - Select basic architecture
 - Develop baseline system configuration
- Do we need a new computing system, or can we use an old system that is already certified?
Defining the System

Requirements Definition

- What must the system do?
- Why must it be done?
- How do we achieve the design goal?
- What are the alternatives?
- What sub-systems perform specified functions?
- Are all functions technically feasible?
- How can the system be tested to show that it satisfies requirements?
Telecommand Waveforms

Pulse Code Modulation (PCM)

- **NRZ-L (Non-Return-to-Zero, Level)**
 - A signifies '1'
 - B signifies '0'
- **SP-L (Split-Phase, Level)**
 - '1' signified by A during 1st half, B during the 2nd half
 - '0' signified by B during 1st half, A during 2nd half
- **NRZ-M (Non-Return-to-Zero, Mark)**
 - Level change from A to B or B to A signifies '1'
 - No level change signifies '0'

Classification of Telemetry Data

- **Housekeeping data**
 - Temperatures, pressures, voltages, currents, ...
- **Attitude and acceleration data**
 - Sun sensors, star sensors, gyros, accelerometers, ...
- **Payload data**
 - Mission dependent
 - Wide range of data rates, bandwidth, criticality, ...

https://en.wikipedia.org/wiki/Spectrogram
Digital vs. Analog Modulation

- **Analog**
 - Amplitude modulation conserves bandwidth
 - Frequency modulation spreads information bandwidth over larger RF bandwidth

- **Digital**
 - Pulse-code modulation (particularly phase-shift keying) uses RF power most efficiently

Link Budget for a Digital Data Link

\[
\frac{E_b}{N_o} = \frac{P_t L_i G_t L_s L_a G_r}{kT_s R}
\]

- **Link budget design goal** is to achieve satisfactory \(E_b/N_o\) by choice of link parameters

\[
E_b = \frac{S}{N} BW \\
N_o = \frac{S}{N} R
\]

- \(P_t = \text{transmitter power}\)
- \(L_i = \text{transmitter-to-antenna line loss}\)
- \(G_t = \text{transmit antenna gain}\)
- \(L_s = \text{space loss}\)
- \(L_a = \text{transmission path loss}\)
- \(G_r = \text{receiver antenna gain}\)
- \(k = \text{Boltzmann's constant}\)
- \(T_s = \text{system noise temperature}\)
Bit Error Rate vs. E_b/N_0

- Goal is to achieve lowest bit error rate (BER) with lowest E_b/N_0
- Implementation losses increase required E_b/N_0
- Link margin is the difference between the minimum and actual E_b/N_0
- BER can be reduced by error-correcting codes
 - Number of bits transmitted is increased
 - Additional check bits allow errors to be detected and corrected

Performance of Coding/Decoding Methods

<table>
<thead>
<tr>
<th>Code</th>
<th>Decoding Method</th>
<th>Coding Gain at $P_e = 10^{-5}$</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>Majority—hard decision</td>
<td>1.5–3.5 dB</td>
<td>Simple</td>
</tr>
<tr>
<td>Block BCH</td>
<td>Algebraic</td>
<td>1.5–4 dB</td>
<td>Complex</td>
</tr>
<tr>
<td>Convolutional</td>
<td>Threshold—hard decision</td>
<td>1.5–3 dB</td>
<td>Fairly simple</td>
</tr>
<tr>
<td>Convolutional</td>
<td>Viterbi—soft decision</td>
<td>4.5–5.5 dB</td>
<td>Fairly complex</td>
</tr>
<tr>
<td>Convolutional</td>
<td>Sequential—soft decision</td>
<td>5.7 dB</td>
<td>Fairly complex</td>
</tr>
<tr>
<td>Concatenated</td>
<td>Viterbi + algebraic</td>
<td>6.7–7.5 dB</td>
<td>Very complex</td>
</tr>
<tr>
<td>block-convolutional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbo</td>
<td>Maximum à posteriori</td>
<td>8.5–9.4 dB</td>
<td>Fairly complex</td>
</tr>
</tbody>
</table>

Note: Theoretical BPSK requires $E_b/N_0 = 9.6$ dB for $P_e = 10^{-5}$. P_e = Bit Error Rate (BER), BPSK = Binary phase-shift keying.

Coding gain is net S/N improvement provided by adding check bits
Telemetry List and Data Format

- For each item
 - Signal ID, data type, required accuracy, sampling rate
- PCM message format
 - e.g. Eight frames, each with 64 8-bit words
 - Fixed synchronization code
 - Frame ID channel
- Specification of data channels
 - Housekeeping, “prime”, commutation

Telemetry Data Encoding

- Analog data
 - Filtering
 - A/D
 - Multiplexer, sub-multiplexer
- Digital bi-level data
 - On-off
- Digital serial data
 - Word length
 - PCM mode
Multiplexing

- Analog Modulation
 - AM, FM, PM, SSB (single sideband), …
- Circuit Mode (circuit mode)
 - TDM, FDM, Polarization, …
- Statistical Multiplexing (variable bandwidth)
 - Packet switching, Dynamic TDMA, Spread Spectrum, …

https://en.wikipedia.org/wiki/Multiplexing

Data Formatting

Packet Telemetry Data Flow

- Application Process Layer
- System Management Layer
- Packetization Layer
- Segmentation Layer
- Transfer Layer
- Coding Layer
- Physical Layer
Parity and Error Detection

- n-bit word = $(n - 1)$ bits of data plus a parity bit (e.g., ASCII 8-bit word for 7-bit code)
- Parity bit is computed (XOR gates) so that the number of "ones" in the word is even (or odd)
- Word is transmitted
- Error in one bit of the word is detected if the number of "ones" is not even (or odd)

<table>
<thead>
<tr>
<th>Action</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A wants to transmit</td>
<td>1001</td>
</tr>
<tr>
<td>A computes parity bit</td>
<td>$1^0^0^1 = 0$</td>
</tr>
<tr>
<td>A adds parity bit and sends</td>
<td>10010</td>
</tr>
<tr>
<td>B receives</td>
<td>10010</td>
</tr>
<tr>
<td>B computes overall parity</td>
<td>$1^0^0^1^0 = 0$</td>
</tr>
<tr>
<td>B reports correct transmission</td>
<td>after observing expected even result.</td>
</tr>
</tbody>
</table>

- If error is detected, B requests re-transmission from A
- Error-correcting codes as in telemetry (convolution and block codes, memory refreshing, redundancy)

Error-Control Coding

- Typical BER: $1:10^5$
- Division by a polynomial
 - e.g., $x^{16} + x^{12} + x^5 + 1$
 - Send 16-bit remainder
- Ground station
 - Divide by same polynomial
 - If 16-bit remainder not the same, re-send
- Forward error correction
 - Various codes, e.g., ...

http://www.ccs.neu.edu/home/raj/Courses/6710/S10/Lectures/Coding.pdf
Telecommand User Interface

- Low-level on-off commands
- High-level on-off commands
- Proportional commands
- Telecommand standards

Memory Load Command Frame Structure
Communications Techniques & Protocols

- Ranging
- Advanced Orbiting Systems
- Proximity Links
- Protocols
 - Store-and-forward networking
 - Continuous file delivery
 - Negative automatic report queuing
 - Proxy transfer facilities
 - Graceful suspend/resume
 - Garbage clearance
 - File manipulation

On-Board Data Handling and Processing
Instruments, Experiments, and Sensors

Compression and Storage

- **On-line data compression**
 - Block-adaptive quantization
 - first-in/first-out buffering
- **Off-line data compression**
 - Lossless or lossy compression
- **Data storage**
 - Blocks and files
Data Downlinks

- Data-handling function RF transmit chain
 - Data routing
 - Buffering
 - Formatting
 - Carrier modulation
 - Amplification
 - Transmission

- Modulation techniques
 - QPSK
 - Amplification
 - Link layer
 - Link availability

Electronics Technology

- Radiation hardness
- Single-event upsets
- CMOS latch-up
- Parity
- Error detection and correction
- Triple modular redundancy
- Multiple execution
- Fault roll-back
 - repeat the function if error is sensed

- Fault roll-forward
 - correct the error and move on

- Watchdog timers
 - detect unusual execution time for program function
 - force a restart if fault is detected

- Improper sequence detection

- Hardware vs. software errors
Radiation Hardness and Single-Event Upsets

- Radiation degrades semiconductor devices
- Ionization due to Gamma rays may trap charges in devices, altering their function
 - Can produce a single-event upset
- Random and age-related failures must be anticipated
 - Shielding
 - Radiation-hardened dielectrics
- Single-event upset (SEU)
 - Radiation flips a bit in data or instruction
- CMOS latch-up
 - Large transient current flow may destroy the device
 - Build in a circuit breaker that shuts off current before damage is done

Triple Modular Redundancy: Hardware

- Parallel hardware implementation for fault tolerance
 - Each sensor, computer, or actuator is replicated three times
 - Multiple execution
 - Voting logic compares the three versions of each output and chooses the version
 - transmitted by two (or all three),
 - middle value, or
 - average value
 - Cost and maintenance implications
Triple Modular Redundancy: Software

- Software implementation for serial data transmission
 - Each word is transmitted three times
 - Voting logic compares the three versions and chooses the version transmitted by two (or all three)
 - Serial data transfer rate is slowed by a factor of three

Reliability

Probability of Success during Period of Operation

\[R(t) : \text{Probability of success} \]
\[P(t) : \text{Probability of failure} \]

\[R(t) = 1 - P(t) \]
Reliability Assessment

- Tools for reliability assessment: Testing
 - Levels of test: development, qualification, acceptance, function
 - Destructive physical analysis
- Tools for reliability assessment: Analysis
 - Statistical distributions
 - Statistics, regression, and inference
 - Fault trees and reliability prediction
 - Confidence level or interval

reliability of a single string

Reliability of a single string = product of individual reliabilities

\[R_{1-n}(t) = R_1 R_2 \ldots R_n \]
Reliability of Parallel (Redundant) Components

Probability of failure of parallel components = product of individual probabilities

\[P_{13}(t) = P_1(t)P_2(t)P_3(t) \]

\[R(t) = 1 - P(t) \]

\[R_{13}(t) = 1 - P_{13}(t) = 1 - P_1(t)P_2(t)P_3(t) \]

Reliability of a Switched Redundant System

Reliability of the switch must be considered

\[R_{\text{system}}(t) = R_1(t) \{ 1 - [1 - R_2(t)][1 - R_3(t)R_2'(t)] \} R_3(t) \]

\[= R_1(t) \{ 1 - P_2(t)P_{S2'}(t) \} R_3(t) \]
Reliability of a String of Parallel Components

\[R_{\text{system}}(t) = \sum_{x=r}^{n} \binom{n}{x} R^x (1 - R)^{n-x} \]

Binomial coefficient

\[\binom{n}{x} = \frac{n!}{x!(n-x)!} \]

\(r = \# \text{ of elements in a parallel component that must survive for operation} \)

Reliability of Parallel Strings

\[P_{1n}(t) = P_1(t)P_2(t)...P_n(t) \]

\[R(t) = 1 - P(t) \]

\[R_{1n}(t) = 1 - P_{1n}(t) = 1 - P_1(t)P_2(t)...P_n(t) \]
Spacecraft Computers

- Spacecraft computing hardware; analogous to Macs and PCs, but
 - Must be ultra-reliable
 - A few generations behind the state-of-the-art
- Memory
- Input/output
- Fault tolerance
- Special-purpose peripherals

Hardware, Software, and Documentation

- Hardware
 - Hardware Configuration Item (HWCI)
 - Computer Board
 - Computer Chip Set/Analog Devices/Logic Components/Discrete Components

- Software
 - Computer Software Configuration Items (CSCIs)
 - Computer Software Component (CSCs)
 - Computer Software Unit

- Documentation
 - Requirements Specification
 - Design Documents
 - Detailed Design Documents
 - Interface Control Documents (ICDs)
System states must be consistent with allocated requirements and with spacecraft’s and ground station’s concepts of operation (“conops”)

Computer System State Diagram

1. Initialize
2. Normal Operations
3. Contingency Operations
4. Planned Operations
5. Planned or Emergency Shutdown
6. Off
7. Power On
8. Failure
9. Another Failure

Computer System Functional Partitioning

- **Group functions**
 - Similarity
 - Complexity
 - Processing type
 - Urgency
 - Timing and throughput
 - External interface
 - Data storage req’t
 - Human participation
 - Flight safety

- **Space/ground tradeoffs**
 - Autonomy
 - Time criticality
 - Downlink bandwidth
 - Uplink bandwidth

- **Hardware/software tradeoffs**
 - Special-purpose h/w
 - Algorithmic complexity
Computer Architecture

- **Central processor**
 - Point-to-point interfaces, central processor and devices
 - Dedicated wiring and software
- **Bus**
 - Processors and devices communicate via a bus
 - Protocol software for transmission control
 - Standard interfaces
- **Ring**
 - Established arbitration (e.g., token-passing) for bus control
- **Instruction set**
 - Assembly language
 - Higher-order language

Computer Resource Estimation

- **Defining processing tasks**
 - Software requirements specification
 - Interface requirements specification
 - Principal classes
 - Control systems
 - System management
 - Mission data management
 - Operating system
 - Utilities
 - Built-in test
- **Estimating software size and throughput**
 - Processor instruction sets
 - Processor clock speeds
 - Historical data for similar processing tasks
 - Preliminary coding of example tasks
Development Phase Issues

- **Hardware selection**
 - Performance, cost, availability, vendor competition
- **Developmental environment**
 - Software languages, tools for coding, compiling, and testing
 - Host/target machines
- **Development costs**
 - Mission life cycle
- **Development tools and methodologies**
 - Specification and analysis aids
 - Design aids
 - Traceability analysis
 - Documentation aids

Typical Life-Cycle Cost Distribution

- Detailed Implementation: 35%
- Design, Code, Test: 45%
- Analysis and Early Design: 20%
- System Maintenance: 10%

Computer System Integration and Test

- **Software Verification**
 - Unit Test
 - Module Test
 - Stand-alone Functional Test
- **Hardware Verification**
 - Component Test
 - Acceptance Test
 - Ground-Based and Space-Based Systems
 - System Integration
 - System Testing
 - On-orbit Calibration and Mission Success

Wertz and Larson
Computer Memory

• Read-only memory (ROM)
 – Non-volatile
 – Non-alterable
 – Store critical programs
 – EAROM, EEROM, EEPROM

• Flash memory (special EEPROM)

• Random-access memory
 – Volatile

• Special-purpose memory
 – Multi-port
 – Cache
 – Multiply-accumulate

• Disk
 – Magnetic
 – CD, DVD

Computer Input/Output

• Ports
 – Data transfer between processor and bus
 • Serial I/O ports
 • Parallel I/O ports
 • I/O-mapped ports
 • Memory-mapped ports

• Direct memory access
 – Sub-systems access memory without going through the processor for large blocks of data or high data rate

• Multi-port memory
 – Simultaneous data access by two or more devices

• Interrupts
 – May be generated by a timer or an event, changing processor function
 – Synchronize activity of multiple processors
 – Context switching and storage

• Timers
• Bus interface
Special-Purpose Peripherals (Signal-Processing Hardware)

Data acquisition

- Logarithmic and data compression
 - Rounding, filtering, coding, channel capacity, probability, incremental values, ...
- Frequency domain transformation
 - Time domain -> frequency domain
 - Fourier transform, inverse transform, wavelets
- Power/energy spectrum accumulation
- Image processing
- Digital/analog conversion
Apollo GNC Software
Testing and Verification

• Major areas of testing
 – Computational accuracy
 – Proper logical sequences
• Testing program
 – Comprehensive test plans
 – Specific initial conditions and operating sequences
 – Performance of tests
 – Comparison with prior simulations, evaluation, and re-testing
• Levels of testing
 – 1: Specifications coded in higher-order language for non-flight hardware (e.g., PCs)
 – 2: Digital simulation of flight code
 – 3: Verification of complete programs or routines on laboratory flight hardware
 – 4: Verification of program compatibility in mission scenarios
 – 5: Repeat 3 and 4 with flight hardware to be used for actual mission
 – 6: Prediction of mission performance using non-flight computers and laboratory flight hardware

Apollo GNC Software
Specification Control

• Guidance System Operations Plan (GSOP)
 – NASA-approved specifications document for mission software
 – Changes must be approved by NASA Software Control Board
• Change control procedures
 – Program Change Request (NASA) or Notice (MIT)
 – Anomaly reports
 – Program and operational notes
• Software control meetings
 – Biweekly internal meetings
 – Joint development plan meetings
 – First Article Configuration Inspection
 – Customer Acceptance Readiness Review
 – Flight Software Readiness Review
Apollo GNC Software Documentation and Mission Support

- **Documentation generation and review**
 - Functional description document: H/W-S/W interfaces, flowcharts of procedures
 - Computer listing of flight code
 - Independently generated program flowchart
 - Users’ Guide to AGC

- **Mission support**
 - Pre-flight briefings to the crew
 - Personnel in Mission Control and at MIT during mission

Apollo Guidance Computer

- Parallel processor
- 16-bit word length (14 bits + sign + parity)
- Memory cycle time: 11.7 μsec
- Add time: 23.4 μsec
- Multiply time: 46.8 μsec
- Divide time: 81.9 μsec

- Memory (ceramic magnetic cores)
 - 36,864 words (ROM)
 - 2,048 words (RAM)
- 34 normal instructions
- Identical computers in CSM and LM
- Different software (with many identical subroutines)
- 70 lb, 55 w

- There were NO computer hardware failures during Apollo flights
Some Flight Computer Variations

Technical Specifications

<table>
<thead>
<tr>
<th>On-Board Computer</th>
<th>VME Compatible On-Board Computer</th>
<th>Single-String Controller</th>
<th>C&DN Processor Controller</th>
<th>Mechanism Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction Set</td>
<td>PowerPC</td>
<td>PowerPC</td>
<td>PowerPC</td>
<td>PowerPC</td>
</tr>
<tr>
<td>Peak Throughput</td>
<td>480 MIPS</td>
<td>480 MIPS</td>
<td>480 MIPS</td>
<td>480 MIPS</td>
</tr>
<tr>
<td>Processor RAM</td>
<td>256 MB</td>
<td>64 MB</td>
<td>256 MB</td>
<td>256 MB</td>
</tr>
<tr>
<td>Non-Volatile Program Storage</td>
<td>144 MB</td>
<td>64 MB</td>
<td>144 MB</td>
<td>144 MB</td>
</tr>
<tr>
<td>DMA Channels</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>System Bus</td>
<td>2.1553</td>
<td>1.1553</td>
<td>2.1553</td>
<td>2.1553</td>
</tr>
<tr>
<td>Other Interfaces</td>
<td>3-High Speed Serial, VME Bus</td>
<td>3-High Speed Serial, VME Bus</td>
<td>Analog and Digital Interfaces</td>
<td>Tolerates and Telemetry, Analog and Digital Interfaces</td>
</tr>
<tr>
<td>Typical Size (inches)</td>
<td>9 x 6.6 x 3.0 (3 Modules)</td>
<td>Single-Width 6U-60 I/O E1591.2</td>
<td>9 x 6.6 x 3.0 (3 Modules)</td>
<td>9 x 6.6 x 6.3 (15 Modules)</td>
</tr>
<tr>
<td>Typical Power (Watts)</td>
<td>15 - 30</td>
<td>10 - 25</td>
<td>10 - 35</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>3.5 Kg</td>
<td>1.2 Kg</td>
<td>5 Kg</td>
<td>9 Kg</td>
</tr>
</tbody>
</table>

*Exclusive of mounting flange

Pervasive use of VMEbus in spacecraft computers

RAD750 Single Board Computer

- Mars Curiosity Rover, Mars/Lunar Reconnaissance Orbiters, Deep Impact, ...

- Produced: From 2001 to Present
- Designed by: IBM
- Manufacturer: BAE
- Max. CPU clock rate: 110 MHz to 200 MHz
- Min. feature size: 250 nm to 150 nm
- Instruction set: PowerPC v.1.1
- Microarchitecture: PowerPC 750
- Cores: 1
- Application: Radiation hardened
RAD5545 Single Board Computer

- **Designed by**: IBM, Freescale
- **Manufacturer**: BAE
- **Speeds**: 5200 MIPS, 3700MFLOPS
- **Min. feature size**: 45 nm
- **Instruction set**: Power ISA, v 2.06
- **Microarchitecture**: PowerPC e5500, VPX backplane
- **Cores**: 4
- **Application**: Radiation hardened

Fault Tolerance Requirements for Overall System

- Failure at a single point should not cause failure of entire system
- It should be possible to isolate the effects of a single component failure
- It should be possible to contain individual failures to prevent failure propagation
- Reversionary modes should be available ("fail-safe" design)
 - backup software
 - backup hardware
Next Time:
Ground Segment

Supplemental Material
Astronaut Interface With the AGC

- Computer Display Unit or Display/Keyboard
- Sentence
 - Subject and predicate
 - Subject is implied
 - Astronaut, or
 - GNC system
 - Sentence describes action to be taken employing or involving the object
- Predicate
 - Verb = Action
 - Noun = Variable or Program

See http://apollo.spaceborn.dk/dsky-sim.html
And http://www.ibiblio.org/apollo/ for simulation

Verbs and Nouns in Apollo Guidance Computer Program

- Verbs (Actions)
 - Display
 - Enter
 - Monitor
 - Write
 - Terminate
 - Start
 - Change
 - Align
 - Lock
 - Set
 - Return
 - Test
 - Calculate
 - Update

- Selected Nouns (Variables)
 - Checklist
 - Self-test ON/OFF
 - Star number
 - Failure register code
 - Event time
 - Inertial velocity
 - Altitude
 - Latitude
 - Miss distance
 - Delta time of burn
 - Velocity to be gained

- Selected Programs (CM)
 - AGC Idling
 - Gyro Compassing
 - LET Abort
 - Landmark Tracking
 - Ground Track Determination
 - Return to Earth
 - SPS Minimum Impulse
 - CSM/IMU Align
 - Final Phase
 - First Abort Burn
A Little AGC Digital Autopilot Code

Space Shuttle Quintuply Redundant Flight Control Computers

- Five identical IBM AP-101 computers
 - Magnetic core memory later upgraded to semiconductor memory
 - Primary system: 4 parallel computers with identical coding and complex redundancy management software
 - Backup system: 5th computer with independent coding of the same functions
 - Concern for generic software failures
 - HAL/S programming language
Space Shuttle Quintuply Redundant Flight Control Computers

IBM AP-101 Input/Output Processor and Central Processing Unit