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We examine the dynamics of infection by the human immunodeficiency virus (HIV), as well as therapies
that minimize viral load, restore adaptive immunity, and use minimal dosage of anti-HIV drugs. Virtual
therapies for wild-type infections are demonstrated; however, the HIV infection is never cured, requiring
continued treatment to keep the condition in remission. With high viral turnover and mutation rates,

drug-resistant strains of HIV evolve quickly. The ability of optimal therapy to contain drug-resistant
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strains is shown to depend upon the relative fitness of mutant strains.
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1. Introduction
1.1. The problem

Tens of millions of people have been infected by the human
immunodeficiency virus (HIV) since it was first recognized in the
early 1980s, and more than 20 million have died from ensuing dis-
ease [1]. The virus attacks CD4-presenting cells — helper T cells,
macrophages, dendritic cells, eosinophils, microglia, and natural
killer cells — mainstays in the body’s immune response to patho-
genic attack. Without treatment, immune cells and lymphatic tis-
sue are destroyed, and the infection evolves into acquired
immune deficiency syndrome (AIDS), an inevitably fatal condition
for all but a few [2]. While HIV itself is rarely the cause of death,
the body becomes vulnerable to a host of potentially lethal oppor-
tunistic infections and malignancies, including pneumonia, tuber-
culosis, dementia, bacterial sepsis, lymphoma, and Kaposi's
sarcoma. With multi-drug, highly active antiretroviral therapy
(HAART), the rate of HIV progression can be dramatically slowed,
fatalities brought about by the disease have plummeted since the
inception of HAART.

Nevertheless, HAART is not a cure because current drug regi-
mens cannot eliminate diverse HIV strains in a broad population
[3]. Furthermore, HAART can lead to serious and discomforting side
effects. Cardiovascular disease, hepatitis, liver failure, pancreas
damage, glucose intolerance, kidney stones, rashes, depression,
fat accumulation and redistribution, nausea, diarrhea, pain or
numbness in the feet, mouth inflammation, blurred vision, head-
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ache, dizziness, anemia, weakness, insomnia, and adverse interac-
tion with anti-HIV drugs are not uncommon [4].

There are a number of reasons why the human immunodefi-
ciency virus cannot be defeated with current therapy. The virus
targets different immune-system cell types that are capable of rep-
licating the virus; treatments that inhibit HIV replication in one
cell type may not be as effective for another. Thus, the virus is
sequestered in reservoirs that are the source of latent infection.
Once infected by a single HIV particle (or virion), an immune cell
may produce over a thousand copies of the virion before the cell
is destroyed; hence, unchecked infection is exponentially unstable.
Long-term remission requires continued stable control over the
immune cells that are vulnerable to infection for the remainder
of the patient’s life. There is no assurance that the last virion will
not replicate unless the therapy induces stable decay to the HIV
production process [5].

The pathogen is able to adapt to maintain its virulence in the
presence of natural immune response and drug therapy. HIV is a
retrovirus that transmits the genetic code contained in its dual
strands of RNA by reverse transcription to cDNA [1]. This process
is not monitored and controlled by the exonuclease proof reading
that occurs in forward transcription from DNA to RNA. Thus, the
DNA that the virus splices into the host cell’s genome is highly var-
iable. Many mutants of the virus are replicated, and some of these
are likely to resist therapy.

In the remainder of the paper, we present a mathematical mod-
el of HIV infection with drug-resistant mutation and demonstrate
the effects of mathematically optimal therapy. The virtual therapy
is optimal in the sense that it minimizes the infectious viral load
and count of infected helper T cells (also called T, or CD4" cells),
trading off the beneficial effects of reduced concentrations of the
virus and infected cells against the adverse side effects of therapy.
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Coupling between wild-type (typical or most cost common) and
less-fit drug-resistant HIV strains plays an important role in pro-
viding such control.

1.2. Therapy, persistence, and mutation

Because HIV has a high turnover rate, the main goal of current
HIV therapy is to break the replication cycle. Fundamental damage
to the immune system occurs during the first weeks of infection,
when the diversity of virions is small [6]. A “hit early, hit hard” ap-
proach to therapy is more likely to minimize damage to lymphoid
tissue and to eradicate a higher percentage of virulent particles
than delayed treatment would [7].

With ten to a hundred million productively infected copies
circulating at any given time, Ty, cell infection is not only the dis-
ease’s predominant feature, it is at the core of the immune sys-
tem’s dynamic response to HIV. Current HIV drugs enter the
cells’ nucleus and cytoplasm via passive diffusion, and they oper-
ate at chokepoints in the replicative sequence. Reverse transcrip-
tase inhibitors (RTIs) are intended to prevent viral RNA from
producing viral cDNA, thereby preventing a target cell’s genome
from being modified. The HIV’s reverse transcriptase cannot dis-
tinguish between viral nucleosides and nucleoside-analog RTIs
(NRTIs), which contain a chain-terminating sequence that pre-
vents the formation of complete HIV cDNA [8]. Non-nucleoside
RTIs (NNRTIs) use a different mechanism, blocking a binding
pocket in the HIV reverse transcriptase to halt synthesis. Protease
inhibitors (PIs) act farther downstream in the replication process,
preventing protease from cleaving the long HIV peptide chain
produced by translation into the smaller proteins that are essen-
tial to fusing virions with new targets. A PI does not prevent the
synthesis of viral components, but it does render the compo-
nents non-infectious. Dosage is a critical factor not only in treat-
ing the disease but also in causing adverse side effects and
creating selective pressure for mutation. PIs are generally less
toxic than RTIs, and they are less likely to select for drug-resis-
tant mutants.

The principal failing of these drugs is that they are vulnerable to
mutation in the HIV genome. The genome contains about 10* base
pairs, and the point mutation rate is about one per 103-10* base-
pair replications, or one to 10 per virion replication [7]. Given the
broad nature of mutation [9], only a small percentage of mutant
quasispecies are viable [10]. However, the number of new virions
produced each day is large, and it is just a matter of time before
strains resistant to any monotherapy (i.e., single-drug therapy) ap-
pear. Without therapy, wild-type strains dominate most mutant
strains; however, with therapy, wild-type quasispecies are re-
pressed, giving less-fit (but potentially lethal) mutants the oppor-
tunity to survive.

While a single point mutation in the reverse-transcriptase
genomic sequence is sufficient to cause resistance to an NNRTI
[11], multiple mutations are required to escape NRTIs or Pls
[10,12]. Furthermore, resistance to one drug in a class (e.g., NRTI,
NNRTI, or PI) can produce cross-resistance to other drugs in the
same class [12]. Consequently, monotherapy is susceptible to
early drug resistance. Because HAART employs several drugs of
different types, many mutations are required to defeat the ther-
apy. Adding new classes of drugs to the HAART “cocktail,” such
as attachment, fusion, maturation, and integrase inhibitors or
adjuvant agents (which augment natural immune functions),
should further increase the number of mutations required to de-
feat treatment. Tailoring therapeutic profiles through a better
understanding of HIV-immune system dynamics can improve
overall efficacy and minimize side effects [13]. Preventative vac-
cines are desperately sought, but there is little hope that they will
be available soon [14].

2. Mathematical models and control of HIV-immune system
dynamics

Mathematical models of HIV-immune system dynamics (or
“host-pathogen interactions”) were proposed not later than 1986
[15,16], and the disease has become the subject of intense model-
ing efforts. A review of all of the models is beyond the present
scope; however, we direct attention to several important papers.
References [3,15-35] investigate dynamic models of host-patho-
gen interactions for the principal virus strain, HIV-1; these papers
compare and correlate response characteristics with biological and
clinical observations. Consideration is given to infection in various
compartments [18-20], modeling viral killing explicitly or implic-
itly [21], macrophage infection [22], and causes of transient vire-
mia [3,23]. Several of the papers demonstrate computed effects
of therapeutic alternatives, such as switching various drugs on or
off during the course of infection [24-27] and vaccination [28].
Systems and control theories are applied to the specification of
therapeutic protocols in [36-43], particularly through optimization
of a treatment history or stabilization via feedback. All of these
models and design studies are based on ordinary-differential equa-
tions, typically of order four or less.

2.1. Wild-type model of host-pathogen interaction

The present paper takes the fourth-order model of [[38], after
[29] and [30]] as a starting point, with modifications to the ways
in which control effects are expressed, with significant changes
to the cost function that is minimized by optimal control, and with
the addition of a drug-resistant compartment. This model contains
many of the central elements of other models, and it captures the
major features of HIV infection. The four elements of the initial
model’s state represent concentrations (#/mm?) of free, wild-type,
infectious HIV particles (x;), uninfected Tj, cells (x,), proviral in-
fected Ty cells (x3), and productively infected Ty, cells (x4) in the
periphery, gut, and lymphoid organs.! The model of host-pathogen
dynamics is illustrated in Fig. 1. Ovals represent elements of the
state, and boxes are elements of control; arrows depict the replica-
tion cycle and dynamic interactions with the state. The model is ex-
pressed by the ordinary-differential equations,

).(1 = —a1X1 — (12X1X2(1 — uz) + a3a4X4(1 — U1) (1)
. ds
= — 1-— 1-— _
X2 T+x AX1Xa( U)( Ug) — dsX2
X; X X,

+a7<1 2t 3+ 4>x21+u3 (2)
X3 = (12X1X2(1 — le)(l — U4) — OgX3 — UgX3 (3)
X4 = (9gX3 — U4X4 (4)

The form and rationale for the dynamic equations are given in
[29,30,38]. From [38], the parameter values are a;=24,
a,=2.4x1075, a3=1200, a,=0.24, as=10, ag=0.02, a;=0.03,
ag = 1500, and ag = 0.003. The degree to which these equations re-
flect current knowledge of HIV dynamics can be assessed by refer-
ring to the prior sections of this paper. Clearly, many effects are
aggregated and simplified; the core notion is that infection of T,
cells is the dominant dynamic characteristic. Explicit cytotoxic
and phagocytic immune effects are not modeled but are incorpo-
rated in parameter definitions; a discussion of this assumption

1 Ref. [32]] notes that protease inhibitors do not prevent the production of virions
but they do render them non-infectious. Consequently, the rate of infectious virion
production, X, is reduced by PI therapy, where the PI concentration is represented by
uq (Eq. (1)). The clinically measured total viral load following the start of PI treatment
is the sum of infectious and non-infectious populations. Because the non-infectious
component does not affect the T-cell population [32] and no use is made of a total
viral load measurement, the non-infectious population need not be modeled here.
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Fig. 1. Overview of the dynamic model for HIV-immune system interaction.

can be found in [21]. Egs. (1)-(4) do not account for mutation,
whose effects are considered in a later section.

The model of infection and immune response (Eqs. (1)-(4)) can
be expressed in vector form as,

X(t) = fx(t), u(®)] )

where X'(t) = [x1(t)x2(t)x3(t)x4(t)] is the (n x 1) state vector and
u'(t) = [uy(Oua(us(tua(t)] is the (m x 1) control (or therapy) vec-
tor. The control vector is different from that considered in [38];
its elements are concentrations of protease inhibitor (u,), fusion

inhibitor (u,), Ty, cell enhancer (u3), and reverse transcription inhib-
itor (u4). The controls either attenuate or enhance naturally occur-
ring terms in the dynamic equations and take values in the range
of (0,1). If an inhibitor (u4,u,,u4) takes a value of one, it eliminates
the term’s effect. When the enhancer u; takes a value of one, the
concentration-limited rate of healthy T;, cell production is doubled.
Here, we illustrate monotherapies that employ either Pls or RTIs.
A typical untreated wild-type response is shown in Fig. 2. The
initial condition is taken at a point beyond sero-conversion where
the immune system is still reducing viral load [x;(0) = 0.049,x,(0) =
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Fig. 2. Untreated response to wild-type HIV infection.



96 R.F. Stengel / Mathematical Biosciences 213 (2008) 93-102

904,x3(0) = 0.034,x4(0) = 0.0042]. Uninfected Ty, cell concentration
is climbing (a good response), but so are the concentrations of in-
fected cells, indicating that the HIV replication process is progress-
ing. Over a simulated period of a year-and-a-half, the
concentrations of free virions and infected T, cells grow, while con-
centration of uninfected T}, cells decays. Left unchecked, the patient
generally progresses to AIDS when the total Ty, cell concentration
falls below 200 cells per mm? of blood.

2.2. Optimal therapy for wild-type infection

The optimal therapeutic protocol is derived by minimizing a
treatment cost function, J, that penalizes large values of HIV and in-
fected Ty, cell concentrations at the end time and during the fixed
time interval [t,, t;], as well as excessive application of therapeutic
agents during the interval. The scalar cost function has terminal
and integral components, and it takes the general form,

Jix(0, 0] =5 { X (cx()+ [ 0T (OQK(O)+uT(0) o (O Ru(o)de |

= pix(eo] + [ L) u(e)de
6)

The cost function for wild-type therapy is expressed as
1
TR, u(0)] = 5 57,2 (67 + 55, %3 (60 + 7, Xa(t1)°]

1 2 2 2 (O2d
+2 i (G11X1 ()" + q33%3(£)" + aaXa(t)” + 1us(8)°]dt

The integral and terminal populations of the virus, proviral infected Ty,
cells, and actively infected Ty, cells are to be minimized with respect to
application of the control in the time interval [t,,t;]. The diagonal
matrices S, Q, and Restablish relative weights that penalize variations
from zero of the final state and of the state and control in [¢,, t¢]. The
variables are squared to amplify the effects of large variations and
to de-emphasize contributions of small variations. Each squared ele-
ment is multiplied by a coefficient that establishes the relative impor-
tance of the factor in the treatment cost. The diagonal matrix
elements (s;;,¢;;) express allowable tradeoffs between response val-
ues, while r reflects relative financial or physiological cost, such as
toxicity or discomfort. Thus, there are mechanisms for trading one
variation against the others in defining the treatment protocol, bal-
ancing speed and efficacy of treatment against implicit side effects.

This cost function is significantly different from the one used in
[38]; as a consequence, the results of optimization are different as
well. The present cost function minimizes terminal and integral
virus concentration, which is not included in the cost function of
[38]; consequently, the viral concentration can be driven toward
zero, which is not the case for the earlier study. Ty, cell population
is not included in the present cost function because forcing HIV
concentration to a low value automatically restores the Ty cell pop-
ulation to normal levels.

The cost-function integrand, L[x(t),u(t),t], is called the Lagrang-
ian of the cost function. We adjoin the dynamic constraint to the
Lagrangian in the Hamiltonian of the system through the (n x 1)
adjoint vector, A(t):

H(x(0), u(t), A(0), £) = LX(£), u(0), £) + 2" (OFX(0), u(r)] ®)

(7) The cost function then can be expressed as
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Fig. 3. Effect of optimal protease inhibitor therapy with 100% efficacy.
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JIX(), u(0)] = px(tr)] + / {HX(D), u(0)] - T (OX(0)}de 9)

Necessary conditions for minimizing Eq. (9) with respect to control
application are expressed by the three Euler-Lagrange equations
[44]:

T T
PR (L CETRTCE R T S
- T
att) = {250 s (1
T T
o [P0 B0.0. 07 [OLENT 2

The (n x n) matrix F(t) and (n x m) matrix G(t) are symbols for the
time-varying Jacobian matrices, {of [X(t),u(t)]/0X(t)}xt) = x(6), u(t)=u(t)
and {of[x(t),u(6)]/ou(t)}|xy=x(), u(p-u*r) €valuated along the deter-
ministic optimal history, [x'(t), w'(t)] in [t,, tf]. The Euler-Lagrange
equations include a linear, ordinary-differential equation whose
integral is the adjoint vector, i(t) (Eq. (10)), a terminal boundary
condition that specifies i(ty) at the end of the interval (Eq. (11)),
and a stationarity condition on the control throughout the interval
(Eq. (12)). Egs. (5) and (10), (11), (12) must be satisfied concur-
rently, specifying a two-point boundary-value problem that is solved
numerically.

The optimizing solution is necessarily iterative because the sys-
tem model is nonlinear, initial conditions are given for X, and ter-
minal conditions are given for 4. The solution is begun by solving
Eq. (5) with a starting estimate of the control history, ug(t) in [t,,
t7]. Eq. (10) is solved, integrating back from the end condition spec-
ified by Eq. (11). In general, the remaining necessary condition for
optimality, Eq. (12), is not satisfied, so a steepest-descent method is
used to generate successive approximations of the optimal control
history u*(t) from

T
w(t) = we_q(t) — 8k(f){%ug)’l(t)]}k4

=u () — a(t)[Hu(O)]} (13)

where ¢(t) is a scalar gain that can be optimized from one iteration
to the next [44], k is the iteration index, and Hy(t) is the Hamilto-
nian gradient with respect to control. The state variables are con-
strained to remain positive, and the control variable, u'(t), is
restricted to (0,1). With no control constraint, Hy(t) tends to zero
as k- > oo, and wy(t) converges to the optimal therapy, u'(t). The re-
sult is a close approximation to the optimal trajectory X (t) in [to, tl.
This approach is applied to an immune response problem in [45].

With bounded control, the steepest-descent algorithm may
drive w(t) to its limiting value over some or all intervals in [t,, 7]
before Hy(t) comes close to zero. By Pontryagin’s Principle, this
bounded solution is the minimizing solution because it yields the
lowest possible value of the Hamiltonian in that interval and,
therefore, the lowest increment to attainable cost [44]. In all of
the examples considered here, the optimal therapy starts at its
maximum value, coming off the boundary as time increases. For
these cases, iterative convergence is obtained after a few trials,
and it is aided by choosing ¢(t) to be an increasing function of t
during the early iterations.

An example based on protease inhibitor (u;) therapy is shown
in Fig. 3; for this example, s;,, = Sp,, = Sp,, = G171 = q33 = Qaqg = 10°
and r = 0.01. The precise values of the weighting factors are not sig-
nificant; higher cost is associated with virion and infected cell con-
centrations, and low cost is associated with drug use. The PI is
assumed to have 100% efficacy, and, as shown in Eq. (1), it has a di-
rect effect on the rate of virion production. The maximum PI dos-
age is maintained for about three months, during which time the
infectious viral load and infected T, cell concentration are reduced
dramatically. The uninfected T;, cell population returns to its target

05 T
HIvV N
0 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
1000 T
Uninfected
T Cells B
900 1 | 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
0.1 T .
Proviral
TCells 005 \ |
0 1 & L L L 1 1
0 50 100 150 200 250 300 350 400 450 500
-3
1
5 x 10 :
Productively \
Infected 0~
T Cells
_5 1 | 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Therapy 0.5
0 1 | 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Time, days

Fig. 4. Effect of optimal reverse transcriptase inhibitor therapy with 100%.
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value (= 1000 cells/ymm?) after five months. At the end of the peri-
od, the PI concentration is decreased toward a maintenance level. If
the terminal cost and integral-state cost weights are increased by a
factor of 10, the maximum therapy is applied for an additional 100
days, and the final virion and infected Ty, cell concentrations are
further reduced. Decreasing the maximum PI dosage to 90% (or
assuming that the maximum dosage has 90% efficacy), the duration
of maximum dosage is increased and the decay rate of infection is
slowed. All of these results suggest that drug therapy could be re-
duced once the initial wild-type infection is controlled, implicitly
lowering side effects and the cost of therapy.

RTI monotherapy (u4) has an indirect effect on virion produc-
tion (Egs. (2) and (3)), reducing the rate of infected T, cell creation
which in turn reduces virion generation. The HIV concentration de-
creases to small values in a month, and drug dosage is reduced be-
low the maximum after 7 months, at which point the uninfected T},
cell concentration is back to normal. These results suggest that PI
and RTI therapy would be effective in controlling wild-type HIV
if there were no mutation.

Although not shown, two other therapeutic effects have been
calculated and are of interest. A fusion inhibitor (u,) affects both
HIV and infected Ty, cell production directly (Egs. (1)-(3)); hence,
its dynamic history is similar to Figs. 3 and 4. Optimizing therapy
with the cost function of Eq. (6) and a notional T}, cell enhancer
(u3) has a counter-intuitive effect: it calls for killing healthy T;, cells
(through negative enhancement). The reason is that Ty, cell concen-
tration does not appear in the cost function. Because healthy Ty,
cells become HIV factories, the only way such a control can reduce
viral and infected T;, cell concentrations is to attack healthy T, cells.
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This seemingly anomalous result suggests that temporary immune
system suppression could play a role in HIV treatment, as it already
does for recovery from organ transplants (suggested by Paul Shap-
shak, University of Miami, in personal communication). Penalizing
deviation from a healthy Ty, cell population in the cost function
gives rise to time-variations in both viral and healthy T, cell levels
that require more study.

2.3. Model of host-pathogen interaction with wild-type and mutant
infection

Regrettably, mutation does occur in HIV replication, and it leads
to drug-resistant strains of the virus. The new strains do not re-
spond to treatment, but it remains to be seen if their dynamic
interactions with drug-sensitive strains can be used to good effect.
To examine this possibility, we append a single mutant strain and
mutantly infected Ty, cell populations to our original fourth-order
model:

).(1 = —a1X1 — (12X1X2(1 — UZ) + a3a4X4(1 — a]o)(l — ul) (14)
. ds
Xy =—————— X1 X2(1 —Uz)(1 — uy) — apX
2 T3 % 1% 2X1X2 ( 2)( 4) 6X2
X2 + X3+ X4 +Xg + X
— a011X5X2 + A7 (1 -2 2 a4 o 7>X2(1 +u3) (15)
8
X3 = (12X1X2(1 — UQ)(l — U4) — OgX3 — UgX3 (16)
).(4 = OgX3 — Uy4X4 (17)
).(5 = A304010X4 + A304X7 — A1X5 — A2011X5X2 (]8)
X5 = (2011X5X2 — doXs — dsXs (19)
).C7 = OgXg — U4X7 (20)

1.5
=
I 1t
€
g
2 05}
0 L I I
0 100 200 300 400 500
1
. 05|
g
S o0
=
'—
-05 |
15 100 200 300 400 500
1
o8}
E ;i 0.6 -
22 04} : g
&3,
S o2} ]
% 100 200 300 400 500
5 0015
(7]
o _
g3
£s 0.01 +
==
3o
£ 80.005] ]
3
& ‘ ‘ ‘
a 0 100 200 300 400 500

Time, days

Fig. 5. Untreated response to wild-type and mutant infection. Mutant fitness = 90%.
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The new state elements represent concentrations of the infec-
tious, mutant HIV strain (xs), proviral T, cells infected by the mu-
tant strain (xg), and Ty cells productively infected by the new
strain (x;). The differential equations for these three variables
(Egs. (18)-(20)) are modeled after Eqgs. (1), (3), and (4), but they
do not contain direct effects of therapy. The rate of mutant HIV
production (Eq. (18)) is proportional to the concentration of T;, cells
that are productively infected by wild-type virions (x4) and by mu-
tant virions (x7). The mutant compartment is coupled to the previ-
ous equations by a mutation rate term (with multiplier a;q), and it
contains a decay term representing “fitness” that is moderated by
a;;. The wild-type strain is assumed to have a fitness of one (after
[46]), and the mutant strain has a fitness (a;,) less than one (else it
would be a wild-type strain through evolution). The equation gov-
erning the production of healthy Ty, cells (Eq. (7)) also is modified
to account for the new populations of virions and infected cells.
For illustrative purpose, we assume that the mutation rate is 10%
(a;0=0.1), about twice the highest value found in the literature,
and we allow the mutant strain fitness to vary between 10% and
90% (a;; = 0.1-0.9).

With a mutant fitness of 90% and no therapy, both HIV strains
progress, and the healthy Ty, cell population decays as before
(Fig. 5). The initial condition for simulation is [x;(0)=0.049,
x2(0) =904, x3(0)=0.034, x4(0)=0.0042, x5(0)=xs(0)=x5(0)=0].
Mutant virions are initially created in Ty, cells that are productively
infected by the wild-type strain; as the population of Ty, cells in-
fected by the mutant strain grows, they, too, produce mutant viri-
ons. The rate of growth is about the same for wild-type and mutant
strains, although the latter has lower net concentration. Reducing
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the mutant fitness to 10% produces a similar result, but the mutant
concentration is lower still. Throughout the simulated period, both
mutant strains grow, but the wild-type strain remains responsible
for the bulk of infection.

2.4. Optimal therapy for wild-type plus mutant infection

Protease inhibitor therapy is optimized for the augmented sys-
tem. To illustrate the “controllability” of the mutant strain (or lack
thereof), the cost function is reframed to penalize the growth of the
mutant strain and its infection of Ty, cells:

][X(t)vu(t)] = % [sfssx5(tf)2 + stsxﬁ(tf)z + 5f77X7(ff)2

1
+5 [q55X5(t)2 + QoeXs ()’ + 77X (1)° + ru,-(t)z] de

2 /i,
1)

Controllability is the capacity to force a dynamic system from an arbi-
trary initial condition to a desired final state in finite time; here, the
desired final state is comprised of the populations of mutant virions
and the Ty, cells that they infect. A system may be controllable through
dynamic coupling of system variables even though the terms in the
final state are not directly affected by the control. For a system with
no constraints on the control magnitude, controllability is assured if
1
c— / T OGOET(OAD]dE £ 0 (22)
Jto
along a typical trajectory [44]; this is the case for the HIV-immune
system model and cost function. Nevertheless, because the drug
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Fig. 6. Response of wild-type and mutant virus to optimal protease inhibitor therapy. Mutant fitness = 90%. s, = S, = S, = (55 = Gg6 = G77 = 1000, and r = 0.01 (solid

line), sp, = S, = S, = Gss = Ges = G477 = 10000, and r = 0.01 (dashed line).
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concentration is restricted to the range (0,1), control saturation
may prevent the desired goal from being reached.

The cost function parameters are Ss;, =Sp, = Sp, = (s5 =
dss = G77 = 1000, and r=0.01.2 The steepest-descent optimization
is applied as before. With a mutant fitness of 90%, the PI effect on
the wild-type HIV strain is similar to the unmutated case (Fig. 3).
The wild-type is virtually eliminated within the first few weeks
through the action of maximum drug dosage (Fig. 6), but the mutant
strain grows exponentially and becomes dominant in a few weeks.
The optimal therapy remains at full value for the first several months
of treatment (solid curve in Fig. 6), where the integrand of Eq. (22) is
large; however, the saturated control effect is not large enough to
defeat the mutant virus. Beyond this point, the integrand of Eq.
(22) is small, and therapy has negligible effect on the HIV population.
The therapy decreases to reduce the control cost, with little impact
on the infection. For s;, = s, = S, =Gs5 = gss = g77 = 10000 (dashed
curve in Fig. 6), therapy remains at its maximum value for an addi-
tional four months, although there is negligible effect on either the
wild-type or mutant populations.

Reducing the mutant fitness level to 70% has little effect on the
optimal PI therapy history, but the healthy T;, cell count is main-
tained at high levels for the period (not shown). The wild-type
HIV is controlled as before, and the mutant strain grows at a much

2 The wild-type strain is, of course, still dangerous and could be retained in the cost
function; it is neglected simply to demonstrate that the wild-type is controlled in the
process of attempting to control the mutant strain.

lower rate. A further reduction in mutant fitness to 60% has a dra-
matic effect: the mutant concentration and its effects diminish
over time (Fig. 7). The optimal dosage becomes smaller toward
the end of the period. Terminal and integral-state weights of
1000 produce the solid curves in the figure, while weights of
10000 produce the dashed curves. Only the therapy curve is clearly
distinguishable between the two cases, remaining at the maximum
value for an additional two months. Thus, there is a dividing point
between success and failure in controlling the drug-resistant mu-
tant strain at a fitness level between 60% and 70%.

Three phases of mutant HIV population growth are evident: ini-
tial step due to wild-type HIV and productively infected T;, cell
populations, decay associated with reduction in both of these pop-
ulations, and growth associated with expansion of the mutantly in-
fected Ty, cell population. If therapy does not arrest mutant virion
growth before the third phase becomes dominant, the infection
cannot be controlled.

It has been suggested that “start-stop therapy” or “drug holi-
days,” in which treatment is stopped for a period of time, could
control the growth of mutant strains by allowing the wild-type
to reestablish itself and out-compete the mutant type for re-
sources. Although largely discounted by clinical trials [4,47], it is
interesting to compare periodic therapy with optimal therapy.
The solid curve of Fig. 8 portrays the effect of PI therapy that is
switched on and off every 60 days for a mutant strain with 60% fit-
ness and terminal and integral-state weights of 10000. The wild-
type population increases during the “off” periods, and associated
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Fig. 8. Effect of periodic therapy on viral concentrations and immune response. Mutant fitness = 60%. 60-day period (solid line), partially optimized therapy initialized with

periodic therapy (dashed line).

Ty cell infection responds as well; however, the mutant popula-
tions are not diminished but are higher than for the optimal case
(dashed lines of Fig. 7). Using the periodic therapy as a starting
point, 20 iterations of the optimizing algorithm produce the
dashed curves of Fig. 8. The response is improved with partial opti-
mization, demonstrating that the periodic therapy has no benefit.

There is a major caveat: we have no control over the fitness of
mutant strains, and there is every reason to believe that mutations
at every fitness level occur. Nevertheless, the present results sug-
gest that monotherapy can have an effect on controlling at least
some proportion of the drug-resistant mutant population. Multi-
drug therapy targets different mutant strains, increasing overall
efficacy. If fitness, drug resistance, and progression of the disease
are related, as suggested in [10,46], optimizing multi-drug strate-
gies may reveal synergistic effects that are currently unknown,
providing better control of the virus and reducing harmful side ef-
fects of treatment.

3. Reflections and extensions

The suggestions for HIV therapy that are presented here are
optimal only to the extent that the mathematical models are accu-
rate reflections of host-pathogen-pharmaceutical interactions.
Complex issues of pharmacokinetics have not been addressed, un-
der the assumption that prescribed levels of therapeutic agents
could be maintained in circulatory and lymphatic systems. The cir-
culatory and lymphatic systems have been treated as a single con-
trol volume, although we know that host-pathogen interactions

and residence times are quite different in the periphery and in var-
ious lymphoid and mucosal tissues. Furthermore, no two individu-
als respond to infection and treatment in quite the same way, in
large part because the rest of the body’s systems couple into HIV
response. The immune system’s active response is only inferred
in the model, the dynamics of CD4 cells other than Ty, cells have
been neglected, and details of viral reservoirs remain to be deter-
mined. There may never be answers to reasonable questions about
the nature of important physiological traits and the potential direct
and side effects of therapy.

Still, there is cause for future work on optimal therapies for HIV.
Results of optimization provide a basis for rational design of ther-
apies for trials and clinical application. The present analysis pre-
sumes that the therapy is derived from a single optimization
over a fixed time interval, with known initial conditions, and with
a perfect mathematical model. Robustness of the therapy can be
increased by feedback control and state estimation. Because the
time for computation is short compared to the time for treatment,
the therapy could be derived and applied in a step-wise fashion
from optimizations that were repeated on a periodic basis (e.g.,
every few weeks) using a current set of measurements, revisions
to the model (if known), and a sliding end time. This is a nonlinear
process known as model predictive control [48], a form of which is
applied to HIV in [43]. References 49 and 50 present linear control
alternatives to dealing with uncertainty and incompleteness in im-
mune system models, measurements, and control action. Feedback
control adjusts drug dosage to account for measured deviations of
viral and immune response from optimal values [49], while state
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estimation reduces the effects of feedback measurement and mod-
el errors [50]. In the normal course of biomedical research, models
will improve, allowing control theory to make significant contribu-
tions to clinical practice.

4. Conclusion

Numerical optimization of nonlinear models can suggest
improved therapies for treating HIV infection. The dynamics of
infection are more complex and varied than portrayed by the
simple mathematical models used here, but the analytical results
give structures and rationales for treatment that could prove
foundational for future practice. In particular, the study shows that
current drug classes can provide indirect control of low-fitness
drug-resistant HIV strains through dynamic coupling to wild-type
strains and immune system dynamics. Current computational
results support conclusions derived from clinical experience that
“hit early, hit hard” therapy is optimal. Extension of this approach
to multi-drug HIV therapy is straightforward and is the logical next
step.
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